4,306 matches
-
se lege de o moleculă de ARn m, proces însoțit de prezența unui anticodon. Pe măsură ce ribozomul migrează de-a lungul moleculei de ARNm (un codon o dată) o altă moleculă de ARNt este atașată ARNm. Are loc eliberarea ARNt primar, iar aminoacidul care este atașat de acesta este legat de ARNt secundar, care îl leagă de o altă moleculă de aminoacid. Translația continuă pe măsură ce lanțul de aminoacid este format. La un moment dat apare un codon de stop, o secvență formată din
Proteină () [Corola-website/Science/303840_a_305169]
-
lungul moleculei de ARNm (un codon o dată) o altă moleculă de ARNt este atașată ARNm. Are loc eliberarea ARNt primar, iar aminoacidul care este atașat de acesta este legat de ARNt secundar, care îl leagă de o altă moleculă de aminoacid. Translația continuă pe măsură ce lanțul de aminoacid este format. La un moment dat apare un codon de stop, o secvență formată din 3 nucleotide (UAG, UAA), care semnalează sfîrșitul lanțului proteic. Chiar după termminarea translației lanțurile proteice pot suferi modificări post-translaționale
Proteină () [Corola-website/Science/303840_a_305169]
-
o dată) o altă moleculă de ARNt este atașată ARNm. Are loc eliberarea ARNt primar, iar aminoacidul care este atașat de acesta este legat de ARNt secundar, care îl leagă de o altă moleculă de aminoacid. Translația continuă pe măsură ce lanțul de aminoacid este format. La un moment dat apare un codon de stop, o secvență formată din 3 nucleotide (UAG, UAA), care semnalează sfîrșitul lanțului proteic. Chiar după termminarea translației lanțurile proteice pot suferi modificări post-translaționale și plierea lanțului proteic, responsabilă de
Proteină () [Corola-website/Science/303840_a_305169]
-
chimică poate avea loc în laborator, dar pentru lanțuri mici de proteine. O serie de reacții chimice cunoscute sub denumirea de sinteza peptidelor, permit producerea de cantități mari de proteine. Prin sinteza chimică se permite introducerea în lanțul proteic a aminoacizilor ne-naturali, atașarea de exemplu a unor grupări fluorescente. Metodele sunt utilizate în biochimie și in biologia celulei. Sinteza are la bază cuplarea grupării carboxil -COOH (carbon terminus) cu gruparea -amino -NH (segmentul N terminus). Se cunosc 2 metode de
Proteină () [Corola-website/Science/303840_a_305169]
-
grupării din lanțul proteic se face prin incubare în acid trifluoracetic (TFA). Protejarea grupării prin intermediul Fmoc este de obicei lentă, deoarece anionul nitro produs la sfîrșitul reacției nu este un produs favorabil desfășurării reacției. Datorită compoziției, fiind formate exclusiv din aminoacizi, se întâlnesc alături de alți compuși importanți de tipul polizaharidelor, lipidelor și acizilor nucleici începând cu structura virusurilor, a organismelor procariote, eucariote și terminând cu omul. Practic nu se concepe viață fără proteine. Proteinele pot fi enzime care catalizează diferite reacții
Proteină () [Corola-website/Science/303840_a_305169]
-
pot fi enzime care catalizează diferite reacții biochimice în organism, altele pot juca un rol important în menținerea integrității celulare (proteinele din peretele celular), în răspunsul imun și autoimun al organismului. Majoritatea microorganismelor și plantelor pot sintetiza toți cei 20 aminoacizi standard, în timp ce organismele animale obțin anumiți aminoacizi din dietă (aminoacizii esențiali). Enzime cheie, cum ar fi de exemplu aspartat kinaza, enzimă care catalizează prima etapă în sinteza aminoacizilor lisină, metionină și treonină din acidul aspartic, nu sunt prezente în organismele
Proteină () [Corola-website/Science/303840_a_305169]
-
biochimice în organism, altele pot juca un rol important în menținerea integrității celulare (proteinele din peretele celular), în răspunsul imun și autoimun al organismului. Majoritatea microorganismelor și plantelor pot sintetiza toți cei 20 aminoacizi standard, în timp ce organismele animale obțin anumiți aminoacizi din dietă (aminoacizii esențiali). Enzime cheie, cum ar fi de exemplu aspartat kinaza, enzimă care catalizează prima etapă în sinteza aminoacizilor lisină, metionină și treonină din acidul aspartic, nu sunt prezente în organismele de tip animal. La aceste organisme aminoacizii
Proteină () [Corola-website/Science/303840_a_305169]
-
altele pot juca un rol important în menținerea integrității celulare (proteinele din peretele celular), în răspunsul imun și autoimun al organismului. Majoritatea microorganismelor și plantelor pot sintetiza toți cei 20 aminoacizi standard, în timp ce organismele animale obțin anumiți aminoacizi din dietă (aminoacizii esențiali). Enzime cheie, cum ar fi de exemplu aspartat kinaza, enzimă care catalizează prima etapă în sinteza aminoacizilor lisină, metionină și treonină din acidul aspartic, nu sunt prezente în organismele de tip animal. La aceste organisme aminoacizii se obțin prin
Proteină () [Corola-website/Science/303840_a_305169]
-
autoimun al organismului. Majoritatea microorganismelor și plantelor pot sintetiza toți cei 20 aminoacizi standard, în timp ce organismele animale obțin anumiți aminoacizi din dietă (aminoacizii esențiali). Enzime cheie, cum ar fi de exemplu aspartat kinaza, enzimă care catalizează prima etapă în sinteza aminoacizilor lisină, metionină și treonină din acidul aspartic, nu sunt prezente în organismele de tip animal. La aceste organisme aminoacizii se obțin prin consumul hranei conținând proteine. Proteinele ingerate sunt supuse acțiunii acidului clorhidric din stomac și acțiunii enzimelor numite proteaze
Proteină () [Corola-website/Science/303840_a_305169]
-
aminoacizi din dietă (aminoacizii esențiali). Enzime cheie, cum ar fi de exemplu aspartat kinaza, enzimă care catalizează prima etapă în sinteza aminoacizilor lisină, metionină și treonină din acidul aspartic, nu sunt prezente în organismele de tip animal. La aceste organisme aminoacizii se obțin prin consumul hranei conținând proteine. Proteinele ingerate sunt supuse acțiunii acidului clorhidric din stomac și acțiunii enzimelor numite proteaze, proces în urma căruia lanțurile proteice sunt scindate (denaturate). Ingestia aminoacizilor esențiali este foarte importantă pentru sănătatea organismului, deoarece fără
Proteină () [Corola-website/Science/303840_a_305169]
-
prezente în organismele de tip animal. La aceste organisme aminoacizii se obțin prin consumul hranei conținând proteine. Proteinele ingerate sunt supuse acțiunii acidului clorhidric din stomac și acțiunii enzimelor numite proteaze, proces în urma căruia lanțurile proteice sunt scindate (denaturate). Ingestia aminoacizilor esențiali este foarte importantă pentru sănătatea organismului, deoarece fără acești aminoacizi nu se poate desfășura sinteza proteinelor necesare organismului. De asemenea, aminoacizii sunt o sursă importantă de azot; unii aminoacizi nu sunt utilizați direct în sinteza proteică, ci sunt introduși
Proteină () [Corola-website/Science/303840_a_305169]
-
obțin prin consumul hranei conținând proteine. Proteinele ingerate sunt supuse acțiunii acidului clorhidric din stomac și acțiunii enzimelor numite proteaze, proces în urma căruia lanțurile proteice sunt scindate (denaturate). Ingestia aminoacizilor esențiali este foarte importantă pentru sănătatea organismului, deoarece fără acești aminoacizi nu se poate desfășura sinteza proteinelor necesare organismului. De asemenea, aminoacizii sunt o sursă importantă de azot; unii aminoacizi nu sunt utilizați direct în sinteza proteică, ci sunt introduși în procesul de gluconeogeneză, proces prin care organismul asigură necesarul de
Proteină () [Corola-website/Science/303840_a_305169]
-
acidului clorhidric din stomac și acțiunii enzimelor numite proteaze, proces în urma căruia lanțurile proteice sunt scindate (denaturate). Ingestia aminoacizilor esențiali este foarte importantă pentru sănătatea organismului, deoarece fără acești aminoacizi nu se poate desfășura sinteza proteinelor necesare organismului. De asemenea, aminoacizii sunt o sursă importantă de azot; unii aminoacizi nu sunt utilizați direct în sinteza proteică, ci sunt introduși în procesul de gluconeogeneză, proces prin care organismul asigură necesarul de glucoză în perioadele de înfometare (mai ales proteienele aflate în mușchi
Proteină () [Corola-website/Science/303840_a_305169]
-
proteaze, proces în urma căruia lanțurile proteice sunt scindate (denaturate). Ingestia aminoacizilor esențiali este foarte importantă pentru sănătatea organismului, deoarece fără acești aminoacizi nu se poate desfășura sinteza proteinelor necesare organismului. De asemenea, aminoacizii sunt o sursă importantă de azot; unii aminoacizi nu sunt utilizați direct în sinteza proteică, ci sunt introduși în procesul de gluconeogeneză, proces prin care organismul asigură necesarul de glucoză în perioadele de înfometare (mai ales proteienele aflate în mușchi). În funcție de compoziția lor chimică ele pot fi clasificate
Proteină () [Corola-website/Science/303840_a_305169]
-
ci sunt introduși în procesul de gluconeogeneză, proces prin care organismul asigură necesarul de glucoză în perioadele de înfometare (mai ales proteienele aflate în mușchi). În funcție de compoziția lor chimică ele pot fi clasificate în: Datorită formării aproape în exclusivitate din aminoacizi, putem considera proteinele ca fiind de fapt niște polipeptide, cu masă moleculară foarte mare, între 10.000 și 60.000.000. Masa moleculară se determină prin diferite metode, mai ales în cazul proteinelor cu masa moleculară foarte mare ca de
Proteină () [Corola-website/Science/303840_a_305169]
-
constatat că în soluții diluate se găsesc macromolecule proteice izolate, iar în cazul soluțiilor concentrate se formează agregate de macromolecule proteice. Soluțiile coloidale ale proteinelor, coagulează prin încălzire, prezintă efectul Tyndall (dispersia fasciculului de lumină). Proteinele, la fel ca și aminoacizii, sunt substanțe amfotere și formează în soluții apoase amfioni: formula 1, în prezența HO În mediu acid proteinele se comportă ca baze slabe, ele primind protoni și formând cationi proteici: formula 2, cation al proteinei. Reacția stă la baza "electroforezei" proteinelor, datorită
Proteină () [Corola-website/Science/303840_a_305169]
-
de soluție tampon, prin acest lucru contribuind la menținerea echilibrului acido-bazic al organismului. În general caracterul amfoter este imprimat de cele grupările -NH și -COOH libere care nu sunt implicate în legăturile peptidice. Dacă în molecula proteinei există mai mulți aminoacizi dicarboxilici atunci molecula se va comporta ca un acid slab, iar în cele în care predomină aminoacizii diaminați se comportă ca baze slabe. Chiar dacă într-o moleculă există un număr egal de grupări amino si carboxil, deci teoretic molecula ar
Proteină () [Corola-website/Science/303840_a_305169]
-
este imprimat de cele grupările -NH și -COOH libere care nu sunt implicate în legăturile peptidice. Dacă în molecula proteinei există mai mulți aminoacizi dicarboxilici atunci molecula se va comporta ca un acid slab, iar în cele în care predomină aminoacizii diaminați se comportă ca baze slabe. Chiar dacă într-o moleculă există un număr egal de grupări amino si carboxil, deci teoretic molecula ar trebui sa fie neutră, în realitate datorită gradului de ionizare mult mai mare a grupării carboxil față de
Proteină () [Corola-website/Science/303840_a_305169]
-
dus la precipitare, proetienele nu revin la forma lor inițială și nu iși pot reface structura moleculară. Proteinele precipitate își pierd din proprietățile hidrofile "obțînînd" proprietăți hidrofobe. Din punct de vedere chimic, proteinele sunt heteropolimeri constituiți din 20 de L-α aminoacizi (așa numiții aminoacizi standard, vezi tabelul), în care grupările carboxil se pot combina cu grupările amino formînd legături peptidice și rezultând lanțurile peptidice. Aminoacizii standard au proprietăți variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și
Proteină () [Corola-website/Science/303840_a_305169]
-
proetienele nu revin la forma lor inițială și nu iși pot reface structura moleculară. Proteinele precipitate își pierd din proprietățile hidrofile "obțînînd" proprietăți hidrofobe. Din punct de vedere chimic, proteinele sunt heteropolimeri constituiți din 20 de L-α aminoacizi (așa numiții aminoacizi standard, vezi tabelul), în care grupările carboxil se pot combina cu grupările amino formînd legături peptidice și rezultând lanțurile peptidice. Aminoacizii standard au proprietăți variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și de proprietățile acesteia
Proteină () [Corola-website/Science/303840_a_305169]
-
obțînînd" proprietăți hidrofobe. Din punct de vedere chimic, proteinele sunt heteropolimeri constituiți din 20 de L-α aminoacizi (așa numiții aminoacizi standard, vezi tabelul), în care grupările carboxil se pot combina cu grupările amino formînd legături peptidice și rezultând lanțurile peptidice. Aminoacizii standard au proprietăți variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și de proprietățile acesteia. În lanțul polipeptidic aminoacizii formează legăturile peptidice prin cuplarea grupei carboxil cu o grupă amino; odată legat în lanțul proteic aminoacidul
Proteină () [Corola-website/Science/303840_a_305169]
-
în care grupările carboxil se pot combina cu grupările amino formînd legături peptidice și rezultând lanțurile peptidice. Aminoacizii standard au proprietăți variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și de proprietățile acesteia. În lanțul polipeptidic aminoacizii formează legăturile peptidice prin cuplarea grupei carboxil cu o grupă amino; odată legat în lanțul proteic aminoacidul se "transformă" în aminoacid "rezidual" iar atomii de carbon, azot, hidrogen și oxigen implicați în legături formează "scheletul" proteinei. Atunci cînd lanțul proteic
Proteină () [Corola-website/Science/303840_a_305169]
-
Aminoacizii standard au proprietăți variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și de proprietățile acesteia. În lanțul polipeptidic aminoacizii formează legăturile peptidice prin cuplarea grupei carboxil cu o grupă amino; odată legat în lanțul proteic aminoacidul se "transformă" în aminoacid "rezidual" iar atomii de carbon, azot, hidrogen și oxigen implicați în legături formează "scheletul" proteinei. Atunci cînd lanțul proteic se tremină cu o grupă carboxil poartă denumirea de carboxi-terminus (sau C -terminus), în timp ce, dacă se termină
Proteină () [Corola-website/Science/303840_a_305169]
-
variate, proprietăți care sunt direct responsabile de structura tridimensională a proteinei, dar și de proprietățile acesteia. În lanțul polipeptidic aminoacizii formează legăturile peptidice prin cuplarea grupei carboxil cu o grupă amino; odată legat în lanțul proteic aminoacidul se "transformă" în aminoacid "rezidual" iar atomii de carbon, azot, hidrogen și oxigen implicați în legături formează "scheletul" proteinei. Atunci cînd lanțul proteic se tremină cu o grupă carboxil poartă denumirea de carboxi-terminus (sau C -terminus), în timp ce, dacă se termină cu gruparea amino, devine
Proteină () [Corola-website/Science/303840_a_305169]
-
în timp ce, dacă se termină cu gruparea amino, devine amino-terminus (N-terminus). Responsabile de proprietățile chimice sunt aceleași grupări carboxil și amino libere, neimplicate în formarea legăturilor peptidice, însă mai intervin și diferiții radicali grefați pe scheletul proteinei. Datorită existenței anumitor aminoacizi în molecula proteinelor, a legăturilor peptidice formate în molecula proteinei dar și grupările funcționale libere sunt responsabile de reacțiile de culoare. După cum s-a văzut mai sus lanțurile peptidice sunt formate de grupările carboxil și aminice a aminoacizilor; există de
Proteină () [Corola-website/Science/303840_a_305169]