1,245 matches
-
termic (denumit și "efect Joule-Lenz") este reprezentat de disiparea căldurii într-un conductor traversat de un curent electric. Aceasta se datorează interacțiunii particulelor curentului (de regulă electroni) cu atomii conductorului, interacțiuni prin care primele le cedează ultimilor din energia lor cinetică, contribuind la mărirea agitației termice în masa conductorului. Produsele tehnice (dispozitive, aparate, utilaje) folosite la încălzire industrială, precum și pentru uzul casnic, funcționează pe baza efectului Termic. Elementul constructiv de circuit comun în alcătuirea acestor produse este un rezistor (sau mai
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
mai mare decât energia de legătură a electronilor, în rețea se formează fononi, în exterior se emit electroni. La un semiconductor impurificat sub influența luminii apare efectul fotooelectric, iar energia radiației incidente este preluată de purtătorii de sarcină și energia cinetică a acestora crește. Am văzut că în joncțiunea pn apare o barieră de potential; sub influența luminii, la o joncțiune fotosensibilă, mărimea barierei crește. Un element care conține o asemenea joncțiune se numește fotoelement și este un generator de tensiune
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
sau doi semiconductori diferiți și zona de contact, de exemplu între cupru și fier apare o tensiune electromotoare de contact. Dacă prin joncțiune trece un curent electric cu semnul de la cupru la fier, electronii din zona de contact capătă energie cinetică suplimentară și temperatura joncțiunii crește; la trecerea unui curent în sens invers, temperatura joncțiunii scade. Dacă într-un circuit electric cu două joncțiuni ca cele de mai sus, circulă un curent electric cu sens adecvat, se poate realiza un transport
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
formează un termocuplu. Într-un fir metalic ale cărui capete se află la temperaturi diferite TA>TB apare o diferență de potențial electric UAB cauzată de faptul că electronii de conducție din capătul cu temperatura mai mare au o energie cinetică mai mare și vor difuza către capătul mai rece. În acest fel capătul cald se va încărca pozitiv, iar capătul rece al firului se va încărca negativ. De remercat că în cazul în care purtătorii mobili de sarcină sunt golurile
Termocuplu () [Corola-website/Science/311530_a_312859]
-
aplicații. În fizică, este folosit în modelarea propagării undelor și propagării căldurii, stând la baza ecuației Helmholtz. Este esențial în electrostatică și mecanica fluidelor, prin prezența sa în ecuația Laplace și ecuația Poisson. În mecanica cuantică, el reprezintă termenul energie cinetică din ecuația Schrödinger. În matematică, funcțiile al căror laplacian este nul se numesc funcții armonice. Operatorul Laplace este un operator diferențial de ordinul al doilea în spațiul euclidian "n"-dimensional, definit ca divergența gradientului. Astfel, dacă "f" este o funcție
Laplacian () [Corola-website/Science/311552_a_312881]
-
exprimă natură discontinua a materiei și energiei la nivel microscopic. De asemenea, frecvențele radiațiilor atomice depind de natură și structura atomului și au valori discrete, spectrele lor fiind spectre de linii. Condiția de cuantificare se exprimă, de obicei, în legătură cu momentul cinetic formulă 5 al electronului aflat în mișcare circulară pe o orbită în interiorul atomului. unde Condiția rezultă din primul postulat al lui Bohr, considerând ipoteza lui de Broglie referitoare la dualismul undă-particulă. Pentru un atom aflat într-o stare staționara, electronul trebuie
Modelul atomic Bohr () [Corola-website/Science/311588_a_312917]
-
exprimă faptul că un electron se poate deplasa doar pe anumite orbite în cadrul atomului, rază acestora crescând cu pătratul numărului cuantic principal formulă 22. În modelul planetar, nucleul este considerat fix, iar energia totală a atomului este dată de suma energiilor cinetice și potențiale ale electronului aflat în mișcare circulară. Introducând cuantificarea razei calculată de Bohr în expresia energiei, se obține pentru atomul de hidrogen: unde cu formulă 24 se notează energia atomului de hidrogen în stare fundamentală formulă 25. Se observă că energia
Modelul atomic Bohr () [Corola-website/Science/311588_a_312917]
-
în care c reprezintă viteza luminii), mulți biografi și istorici moderni văd totuși o corespondență între cele două ecuații. Trebuie totuși precizat că, din punctul de vedere al fizicei moderne, principiul expus de Émilie du Châtelet este corect în ceea ce privește energia cinetică (E) în mecanica clasică (în formularea modernă: E = (1/ 2)mv²), dar nu poate fi corelat cu echivalența masă-energie din concepția lui Einstein. În scrierile ei, Émilie du Châtelet s-a dovedit reprezentantă a gândirii iluministe. Un exemplu îl oferă
Émilie du Châtelet () [Corola-website/Science/311010_a_312339]
-
presiunea atmosferică (variabilă cu altitudinea) este folosită pentru accelerarea acestor gaze, rezultând jetul de gaze care generează propulsia. Accelerarea gazelor se face într-un ajutaj, plasat în spatele turbinei. Ajutajul este cel ce transformă energia internă a gazelor fierbinți în energie cinetică a jetului. Viteza care se poate obține depinde de parametrii gazelor la intrarea în ajutaj, raportul de presiuni la care lucrează ajutajul și de forma și dimensiunile lui geometrice. Forma cu secțiune variabilă a ajutajului se obține printr-un con
Postcombustie () [Corola-website/Science/311163_a_312492]
-
În fizică, ipoteza De Broglie este afirmația că materia (orice obiect) are o natură ondulatorie (dualitatea undă-corpuscul). Relațiile De Broglie arată că lungimea de undă este invers proporțională cu impulsul unei particule și că frecvența este direct proporțională cu energia cinetică a particulei. Ipoteza a fost propusă de Louis de Broglie în 1924 în teza sa de doctorat; pentru această lucrare, de Broglie a primit Premiul Nobel pentru Fizică în 1929, fiind astfel primul care a primit un Premiu Nobel pentru
Ipoteza De Broglie () [Corola-website/Science/311842_a_313171]
-
În mecanica cuantică și fizica particulelor elementare, se numește spin momentul cinetic intrinsec al unei particule (electron, proton, atom, ...) În mecanică clasică, impulsul unghiular al unui corp este asociat cu rotația corpului în jurul propriului său centru de masă. În mecanica cuantică, spinul este deosebit de important pentru sistemele de dimensiuni atomice, cum ar
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
bobina, bară efectuând apoi oscilații de torsiune. Măsurarea experimentală a factorului giromagnetic a condus la următoarele rezultate: Pentru a explica rezultatele celor două experimente, Uhlenbeck și Goudsmidt (1925) au emis ipoteză, conform căreia electronul posedă, pe lângă momente orbitale, și momente cinetic și magnetic proprii. Aceste momente au primit denumirea de "spin electronic", în legătură cu încercarea de a le lega de mișcarea de rotație a electronului în jurul axei sale proprii. Momentul cinetic propriu al electronului este: "|s|=sħ=½ħ", astfel încât proiecția este: "s
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
emis ipoteză, conform căreia electronul posedă, pe lângă momente orbitale, și momente cinetic și magnetic proprii. Aceste momente au primit denumirea de "spin electronic", în legătură cu încercarea de a le lega de mișcarea de rotație a electronului în jurul axei sale proprii. Momentul cinetic propriu al electronului este: "|s|=sħ=½ħ", astfel încât proiecția este: "s=mħ=±½ħ". După introducerea spinului electronului au fost fundamentate atât proprietățile magnetice ale substanțelor, cât și structura de multiplet a liniilor spectrale emise de atomi. Una dintre cele mai
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
alfa este o formă de fisiune nucleară unde atomul părinte se desparte în două produse-fiu. Dezintegrarea alfa este, la bază, un proces de tunelare cuantică. Spre deosebire de dezintegrarea beta, dezintegrarea alfa este guvernată de forța nucleară tare. Particulele alfa au energie cinetică tipică de 5 MeV (aproximativ 0.13% din energia lor totală 110 TJ/kg) și o viteză de 15 000 km/s. aceasta corespunde cu aproximativ 0,05c. Din cauza masei lor destul de mari, a sarcinii +2 și a vitezei relativ
Dezintegrare alfa () [Corola-website/Science/310877_a_312206]
-
exemplu, atomul de plutoniu-238, necesită un strat de doar doar 2,5 mm de plumb pentru protecția împotriva radiațiilor dăunătoare. Fiind relativ grele și încărcate pozitiv, particulele alfa tind să aibă un drum liber mediu foarte scurt, pierzând rapid energie cinetică la distanță mică de sursa lor. Ca rezultat, energii de câțiva MeV sunt cedate unei regiuni relativ reduse de spațiu. Aceasta crește șansele de distrugere a celulelor vii în caz de contaminare internă. În general, radiațiile alfa externe organismului nu
Dezintegrare alfa () [Corola-website/Science/310877_a_312206]
-
joasă, dotat cu trei electrozi: un catod care emite electroni, o grilă pentru accelerare, și un anod. Anodul era ținut la un potențial electric ușor negativ relativ la grilă (deși pozitiv față de cel al catodului), astfel încât electronii să aibă o energie cinetică mică după trecerea de grilă. Instrumentele au fost calibrate pentru a măsura curentul electric dintre cei doi electroni, și a ajusta diferența de potențial dintre catod (electrodul negativ) și grila de accelerare. Franck și Hertz și-au explicat experimentul în
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
și a ajusta diferența de potențial dintre catod (electrodul negativ) și grila de accelerare. Franck și Hertz și-au explicat experimentul în termeni de ciocnire elastică și inelastică. La potențiale scăzute, electronii accelerați căpătau doar o cantitate modestă de energie cinetică. La întâlnirea atomilor de mercur din tub, ei participau la ciocniri pur elastice. Aceasta se datorează predicției mecanicii cuantice că un atom nu poate absorbi energie până când energia de coliziune depășește cea necesară pentru a ridica un electron la o
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
elastice. Aceasta se datorează predicției mecanicii cuantice că un atom nu poate absorbi energie până când energia de coliziune depășește cea necesară pentru a ridica un electron la o stare de energie superioară. Cu coliziuni pur elastice, cantitatea totală de energie cinetică din sistem rămâne aceeași. Deoarece electronii au masă de peste o mie de ori mai mică decât cei mai ușori atomi, înseamnă că electronii dețin marea majoritate a acelei energii cinetice. Potențialele mai înalte servesc pentru a aduce mai mulți electroni
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
energie superioară. Cu coliziuni pur elastice, cantitatea totală de energie cinetică din sistem rămâne aceeași. Deoarece electronii au masă de peste o mie de ori mai mică decât cei mai ușori atomi, înseamnă că electronii dețin marea majoritate a acelei energii cinetice. Potențialele mai înalte servesc pentru a aduce mai mulți electroni prin grilă spre anod și a mări curentul măsurat, până când potențialul de accelerare ajunge la 4,9 volți. Excitarea electronică cu cea mai mică energie în care poate participa un
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
9 volți. Excitarea electronică cu cea mai mică energie în care poate participa un atom de mercur necesită 4,9 electronvolți (eV). Când potențialul de accelerare ajunge la 4,9 volți, fiecare electron liber are exact 4,9 eV energie cinetică (peste energia sa de repaus la acea temperatură) când ajunge la grilă. În consecință, o coliziune între un atom de mercur și un electron liber la acel punct poate fi inelastică, adică energia cinetică a unui electron liber poate fi
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
are exact 4,9 eV energie cinetică (peste energia sa de repaus la acea temperatură) când ajunge la grilă. În consecință, o coliziune între un atom de mercur și un electron liber la acel punct poate fi inelastică, adică energia cinetică a unui electron liber poate fi convertită în energie potențială prin creșterea nivelului de energie al unui electron legat de un atom de mercur: aceasta se numește excitarea atomului de mercur. Pierzându-și astfel toată energia cinetică acumulată, electronul liber
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
inelastică, adică energia cinetică a unui electron liber poate fi convertită în energie potențială prin creșterea nivelului de energie al unui electron legat de un atom de mercur: aceasta se numește excitarea atomului de mercur. Pierzându-și astfel toată energia cinetică acumulată, electronul liber nu mai poate depăși diferența de potențial ușor negativă dintre grilă și anod, iar curentul măsurat scade astfel brusc. Cu creșterea tensiunii, electronii vor participa la o ciocnire inelastică, vor pierde 4,9 eV, dar vor continua
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
accelerare depășește 4,9 V. La 9,8 V, situația se schimbă din nou. Acolo, fiecare electron are atâta energie cât să poată participa la "două" ciocniri inelastice, să excite doi atomi de mercur, și apoi să rămână fără energie cinetică. Din nou, curentul observat scade. La intervale de 4,9 volți acest proces se repetă; de fiecare dată, electronii suferă încă o ciocnire inelastică. Același fenomen se observă și dacă în loc de mercur se folosește neon, dar la intervale de aproximativ
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
la 19 volți—una din tranzițiile atomilor de neoni se face cu emisie de lumină roșie-portocalie. Această strălucire se mută mai aproape de catod cu creșterea potențialului de accelerare, aflându-se mereu la poziția din tub la care electronii ating energia cinetică de 19 eV necesară pentru a excita un nou atom. La 38 de volți, apar două străluciri distincte: una între catod și grilă, și una chiar în dreptul grilei. La potențiale mai înalte, din 19 în 19 volți, au ca rezultat
Experimentul Franck-Hertz () [Corola-website/Science/310979_a_312308]
-
de ani, Franck a fost numit profesor emerit la Universitatea din Chicago, el însă continuând să lucreze la Universitate drept Coordonator al Grupului de Cercetare al Fotosintezei până în 1956. În timpul șederii în Berlin, principalul domeniu al Profesorului Franck a fost cinetică electronilor, atomilor și moleculelor. Primele cercetări ale sale au constat în, conductivitatea electricității prin gaze (mobilitatea ionilor în gaze). Mai târziu, împreună cu Hertz, acesta a investigat comportamentul electronilor liberi în diferite gaze, în mod special impacturile inelastice ale electronilor care
James Franck () [Corola-website/Science/310978_a_312307]