225 matches
-
pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial), se obține figura din dreapta. Suprafețele celor două pătrate mari sunt identice, întrucât laturile acestora sunt congruente. Calculând în fiecare caz suprafețele celor două pătrate, se obține: Se ajunge așadar la formula 12, ceea ce duce direct la relația
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
la formula 12, ceea ce duce direct la relația din teorema studiată. Demonstrația pitagoreică, care a fost deja discutată, a fost o demonstrație prin rearanjare. Aceeași idee este reprezentată în animația din partea stângă, care conține pătratul mare de latură , cu patru triunghiuri dreptunghice identice. Triunghiurile sunt reprezentate alternativ în două moduri de aranjare, în primul în care sunt arătate cele două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c". Suprafața cuprinsă de pătratul exterior nu se
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
și la începutul rearanjării, dar și după, așadar suprafețele pătratelor negre sunt egale. Astfel, ajungem la rezultatul O a doua demonstrație prin rearanjare este reprezentată de animația din mijloc. Un pătrat mare este format din suprafața "c",din patru triunghiuri dreptunghice identice de laturi "a", "b" și "c", amplasate în jurul unui pătrat central mic. Apoi, se formează două dreptunghiuri cu laturile "a" și "b" prin mutarea triunghiurilor. Combinând pătratul mai mic cu aceste dreptunghiuri se formează două pătrate de suprafețe "a
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
a umple pătratul mare inferior. Analog, acest lucru se poate face și invers. Astfel, se poate observa faptul că suprafața pătratului mare este egală cu suprafețele pătratelor mici. Teorema poate fi demonstrată algebric cu ajutorul a patru triunghiuri identice cu triunghiul dreptunghic de laturi "a", "b" și "c", aranjate în interiorul unui pătrat de latură "c", după cum se poate observa în jumătatea superioară a diagramei. Triunghiurile sunt asemenea, având aria formula 13, în timp ce pătratul mic are latura și aria . Așadar, aria pătratului mare este
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
cu o valoare mică "dx" prin extinderea laturii "AC" către "D", atunci "y" de asemenea crește cu "dy". Acestea formează două laturi ale unui triunghi, "CDE", care (cu "E" ales astfel încât "CE" să fie perpendicular pe ipotenuză) este un triunghi dreptunghic aproximativ asemănător cu "ABC". De aceea, rapoartele dintre laturile lor trebuie să fie la fel, adică: Asta poate fi rescris după cum urmează: Aceasta este o ecuație diferențială care prin rezolvare dă Iar constanta poate fi dedusă de la "x" = 0, "y
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
atunci " c" poate fi calculat astfel: Dacă sunt cunoscute lungimea ipotenuzei "c" și a uneia dintre catete ("a" sau "b"), atunci lungimea celeilalte catete se poate calcula: sau Teorema lui Pitagora oferă o relație de legătură între laturile unui triunghi dreptunghic într-un mod simplu, astfel că dacă sunt cunoscute lungimile la două dintre laturi, se poate calcula lungimea celei de a treia. Un corolar al teoremei spune că în orice triunghi dreptunghic, ipotenuza este mai mare decât oricare dintre catete
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
o relație de legătură între laturile unui triunghi dreptunghic într-un mod simplu, astfel că dacă sunt cunoscute lungimile la două dintre laturi, se poate calcula lungimea celei de a treia. Un corolar al teoremei spune că în orice triunghi dreptunghic, ipotenuza este mai mare decât oricare dintre catete, dar mai mică decât suma acestora. O generalizare a teoremei pitagorice este teorema cosinusului, care oferă posibilitatea de a calcula lungimea oricărei laturi a unui triunghi, dacă se cunosc lungimile a două
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
sus face apel însuși la teorema lui Pitagora, dar reciproca poate fi demonstrată și fără să se utilizeze această teoremă. Un corolar ce derivă din reciproca teoremei lui Pitagora este o metodă simplă de a determina dacă un triunghi este dreptunghic, obtuzunghic sau ascuțitunghic. Fie "c" cea mai lungă dintre cele trei laturi și (altfel nu există acest triunghi conform inegalității triunghiului). Atunci, sunt adevărate următoarele relații: Edsger Dijkstra a enunțat această propoziție despre triunghiul ascuțitunghic, obtuzunghic și dreptunghic în următorul
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
triunghi este dreptunghic, obtuzunghic sau ascuțitunghic. Fie "c" cea mai lungă dintre cele trei laturi și (altfel nu există acest triunghi conform inegalității triunghiului). Atunci, sunt adevărate următoarele relații: Edsger Dijkstra a enunțat această propoziție despre triunghiul ascuțitunghic, obtuzunghic și dreptunghic în următorul limbaj matematic: unde "α" este unghiul opus laturii "a", "β" este unghiul opus laturii "b", "γ" este unghiul opus laturii "c", iar sgn reprezintă funcția signum. Un triplet pitagoreic (sau numere pitagoreice) conține trei numere pozitive întregi "a
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
laturii "b", "γ" este unghiul opus laturii "c", iar sgn reprezintă funcția signum. Un triplet pitagoreic (sau numere pitagoreice) conține trei numere pozitive întregi "a", "b" și "c", astfel încât Cu alte cuvinte, un triplet pitagoreic reprezintă lungimile laturilor unui triunghi dreptunghic astfel încât lungimile tuturor laturilor au valori numere întregi. Observații asupra monumentelor megalitice din Europa Nordică arată evidențe ale faptului că aceste triplete erau cunoscute cu mult timp înainte de descoperirea scrisului. Un triplet scris în mod obișnuit este Alte exemple bine-cunoscute
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
construcție al unui segment a cărui lungime este rădăcina pătrată a oricărui număr întreg pozitiv, prin referire la alte două segmente. Fiecare triunghi are o latură (numerotată cu "1") care este aleasă ca unitate de măsură. În fiecare dintre triunghiurile dreptunghice, teorema lui Pitagora stabilește lungimea ipotenuzei în conformitate cu unitatea. Dacă ipotenuza se calculează prin rădăcina pătrată a sumei catetelor (a căror valori sunt: unitatea iar alta orice număr natural) și suma nu este un pătrat perfect, atunci desenul ipotenuzei reprezintă trasarea
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
prin produs scalar. Prin rearanjarea ecuației următoare se obține: Această relație poate fi considerată ca o condiție în produsul scalar și astfel parte din definiția sa. O generalizare a teoremei lui Pitagora are la bază pătratele plasate pe un triunghi dreptunghic. Proprietățile referitoare la figurile asemenea plasate pe laturile unui triunghi erau cunoscute deja de Hipocrate din Chios din secolul V î.Hr., și a fost inclusă de Euclid în lucrarea sa, "Elementele": Dacă cineva construiește figuri asemenea pe fiecare dintre laturile
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
să se folosească teorema lui Pitagora, atunci este posibil să se lucreze invers pentru a se realiza o demonstrație a teoremei. De exemplu, triunghiul central poate fi replicat și folosit ca un triunghi "C" pe ipotenuza sa, și două triunghiuri dreptunghice asemenea ("A" și "B" ) construite pe catetele sale, formate prin divizarea triunghiului central cu ajutorul înălțimii sale. Suma suprafețelor triunghiurilor mai mici este așadar egală cu suprafața celui de-al treilea triunghi, astfel "A" + "B" = "C" și inversând logica precedentă se
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
trei triunghiuri există următoarea relație: Pe măsură ce unghiul θ se apropie de π/2, baza triunghiului isoscel se micșorează, iar lungimile "r" și "s" se confundă tot mai mult, devenind un singur segment. Când θ = π/2, "ADB" devine un triunghi dreptunghic, "r" + "s" = "c", ceea ce amintește de relația lui Pitagora. O demonstrație punctează faptul că triunghiul "ABC" are aceleași unghiuri cu triunghiul "ABD", dar în ordine inversă (cele două triunghiuri au un unghi comun în vârful B, ambele conțin unghiul θ
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
trei laturi perpendiculare): Această formulare scurtă poate fi privită ca o generalizare a teoremei lui Pitagora pentru dimensiuni mai mari. Totuși, acest rezultat este dat doar de aplicarea repetată a teoremei originale a lui Pitagora asupra unei succesiuni de triunghiuri dreptunghice într-o secvență de planuri ortogonale. O generalizare substanțială a teoremei lui Pitagora în spațiul tridimensional este teorema lui De Gua, numită astfel după Jean-Paul de Gua de Malves: Dacă un tetraedru are un vârf format din unghiuri drepte (cum
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
înlocuit de conceptul de normă ||v|| unui vector v, definită ca: Întru-un spațiu prehilbertian, teorema lui Pitagora spune că pentru oricare vectori ortogonali v și w avem Aici, vectorii v și w sunt oarecum înrudiți cu laturile unui triunghi dreptunghic cu ipotenuza egală cu suma vectorială v + w. Această formă a teoremei lui Pitagora este o consecvență a proprietăților produsului scalar: unde produsul scalar ar termenilor este zero, datorită ortogonalității. O generalizare mai profundă a teoremei lui Pitagora legată de
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
paralelelor, adică al cincilea postulat al lui Euclid ). Cu alte cuvinte, în geometria neeuclidiană, relația dintre laturile unui triunghi trebuie să aibă o formă diferită de relația pitagoreică. De exemplu, în geometria sferică, toate cele trei laturi ale unui triunghi dreptunghic (cum ar fi "a", "b" și "c") au lungimea egală cu π/2, și toate unghiurile sale sunt drept, ceea ce se află în contradicție cu teorema lui Pitagora, deoarece Mai jos sunt considerate două cazuri în geometrii neeuclidiene: sferică și
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
toate unghiurile sale sunt drept, ceea ce se află în contradicție cu teorema lui Pitagora, deoarece Mai jos sunt considerate două cazuri în geometrii neeuclidiene: sferică și hiperbolică. În fiecare caz, ca și în cazul euclidian pentru triunghiuri care nu sunt dreptunghice, rezultatul se află având ca punct de plecare teorema cosinusului. Totuși, teorema lui Pitagora rămâne adevărată în geometriile hiperbolică și eliptică dacă și numai dacă suma a două unghiuri este egală cu al treilea, adică "A"+"B" = "C". Laturile sunt
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
și eliptică dacă și numai dacă suma a două unghiuri este egală cu al treilea, adică "A"+"B" = "C". Laturile sunt apoi relaționate astfel: suma suprafețelor cercurilor de diametre "a" și "b" sunt egale cu diametrul "c". Pentru orice triunghi dreptunghic aflat pe o sferă de rază "R" (de exemplu, dacă γ din figură este un unghi drept), de laturi "a", "b", "c", relația dintre laturi ia următoarea formă: Această relație poate fi dedusă ca un fiind caz special al teoremei
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
explicitarea seriilor Maclaurin pentru funcția cosinus ca o expansiune asimptotică, se poate arăta faptul că în timp ce raza "R" se apropie de infinit și argumentele "a/R", "b/R" și "c/R" tind către zero, relația sferică dintre laturile unui triunghi dreptunghic se apropie de forma euclidiană a teoremei lui Pitagora. Substituind expansiunea asimptotică pentru fiecare dintre cosinusuri în relația sferică pentru un triunghi dreptunghic se obține Pentru un triunghi dreptunghic în geometria hiperbolică, cu laturile "a", "b", "c" iar " c" fiind
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
argumentele "a/R", "b/R" și "c/R" tind către zero, relația sferică dintre laturile unui triunghi dreptunghic se apropie de forma euclidiană a teoremei lui Pitagora. Substituind expansiunea asimptotică pentru fiecare dintre cosinusuri în relația sferică pentru un triunghi dreptunghic se obține Pentru un triunghi dreptunghic în geometria hiperbolică, cu laturile "a", "b", "c" iar " c" fiind latura opusă unghiului drept, relația dintre laturi ia următoarea formă: unde cosh este cosinusul hiperbolic. Această formulă este o formă specială a legii
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
c/R" tind către zero, relația sferică dintre laturile unui triunghi dreptunghic se apropie de forma euclidiană a teoremei lui Pitagora. Substituind expansiunea asimptotică pentru fiecare dintre cosinusuri în relația sferică pentru un triunghi dreptunghic se obține Pentru un triunghi dreptunghic în geometria hiperbolică, cu laturile "a", "b", "c" iar " c" fiind latura opusă unghiului drept, relația dintre laturi ia următoarea formă: unde cosh este cosinusul hiperbolic. Această formulă este o formă specială a legii cosinusului hiperbolic care se aplică tuturor
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
este unghiul format la vârful opus laturii "c". Folosind serii Maclaurin pentru cosinusul hiperbolic, , se poate arăta faptul că dacă un triunghi hiperbolic devine foarte mic (anume, când "a", "b" și "c" tind spre zero), relația hiperbolică pentru un triunghi dreptunghic se apropie de teorema lui Pitagora. La un nivel infinitezimal, în spațiul tridimensional, teorema lui Pitagora descrie distanța dintre două puncte separate infinitezimal ca: unde "ds" este elementul distanței iar ("dx", "dy", "dz") sunt componentele vectorului ce separă cele două
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
condițiile: și prisma circulară, care satisfac condițiile: Ambele probleme au o porțiune care produce o integrală simplă pentru metoda mecanică. Pentru prisma circulară, tăiem axa "x" în felii. Regiunea din planul "y"-"z" la orice x este interioară unui triunghi dreptunghic de lungime formula 20 a cărui arie este formula 21, astfel că volumul total este: Care poate fi ușor rectificat folosind metoda mecanică, adăugând fiecărei secțiuni trunghiulare o secțiune a unei piramide triunghiulare cu aria formula 23 echilibrând o prismă a cărei secțiune
Metoda Teoremelor Mecanicii () [Corola-website/Science/322556_a_323885]
-
circa 100 î.Hr.) a continuat să dezvolte calculul trigonometric. Savantul Shia Musulman Nasir al-Din Tusi a fost probabil primul care a considerat trigonometria ca o disciplină matematică distinctă și a fost primul care a descris șase cazuri ale unui triunghi dreptunghic în trigonometria sferică. Matematicianul de origină silesă Bartholemaeus Pitiscus a publicat o lucrare importantă în trigonometrie în anul 1595 și a introdus cuvântul în limbile franceză și engleză. Există un număr enorm de aplicații pentru trigonometrie. O importanță specială deține
Trigonometrie () [Corola-website/Science/299853_a_301182]