1,451 matches
-
mecanismul acestor legături. Mult mai tarziu s-a descoperit că protonii și neutronii nu erau particule fundamentale, ci erau constituite din alte particule, denumite quarcuri. Atracția puternică între nucleoni erau efectul secundar al unei forțe care țineau împreună quarcurile din protoni și neutroni. Teoria cuantică a cromodinamicii explică cum cuarcii poartă o caracteristică numită culoare, deși nu are nici o legătură cu spectrul vizibil... În teoria cromodinamicii cuantice, interacțiunea puternică este descrisă, la fel că forța electromagnetică și interacțiunea slabă, prin intermediul schimbului
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
câmpului gluonic compensează printr-un alt quarc ,de aici rezultă și inexistentă quarcului liber.La energii de peste o anumita limită n ,intervine libertatea asimptotica iar la energii sub această intervine confiarea. Forța nucleară tare explică de ce nucleul atomic, alcătuit din protoni încarcați cu o sarcină pozitivă și neutronii neutri din punct de vedere electric, este destul de stabil. Spre deosebire de forță tare, forța nucleară descrește odată cu mărirea distanței dintre particule. În cadrul nucleului, forța nucleară are un caracter rezidual. Nucleonii au mereu sarcina de
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
pot fi considerate că interacțiuni electromagnetice între atomii neutri din punct de vedere electric și/sau molecule). La o distanță de aproximativ 2,5 fm, forța de atracție a interacțiunii puternice reziduale este comparabil de puternică cu repulsia electrostatica dintre protoni. La o distanță mai mare, forța puternică reziduala descrește exponențial, în timp ce forță electrostatica scade proporțional cu 1/r. Această interacțiune dintre cele două forțe fundamentale explică coeziunea nucleelor atomice, dar și procesul de fisiune al nucleelor grele. Fenomenologic, interacțiunea puternică
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
r. Această interacțiune dintre cele două forțe fundamentale explică coeziunea nucleelor atomice, dar și procesul de fisiune al nucleelor grele. Fenomenologic, interacțiunea puternică reziduala poate fi descrisă că un schimb de pioni. Un lucru care ajută la micșorarea repulsiei dintre protonii unui nucleu este prezentă neutronilor. Aceștia sunt neutri din punct de vedere electric și nu sunt respinși de către protoni. Neutronii participa la schimbul de mezoni în cadrul nucleului, creând o forță suficient de puternică pentru a depăși repulsiile electronice reciproce și
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
grele. Fenomenologic, interacțiunea puternică reziduala poate fi descrisă că un schimb de pioni. Un lucru care ajută la micșorarea repulsiei dintre protonii unui nucleu este prezentă neutronilor. Aceștia sunt neutri din punct de vedere electric și nu sunt respinși de către protoni. Neutronii participa la schimbul de mezoni în cadrul nucleului, creând o forță suficient de puternică pentru a depăși repulsiile electronice reciproce și nucleul să rămână stabil. Astfel, neutronii liberi penetrează ușor prin barieră electrostatica a nucleului, învingând repulsia prin schimbul de
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
obiecte prea mici pentru microscoapele convenționale. Efectul tunel este un mecanism folosit de enzime pentru a crește vitezele de reacție. A fost demonstrat faptul că enzimele folosesc efectul tunel pentru a transfera atât electroni, cât și nuclee, cum ar fi protoni și deuteriul. S-a demonstrat chiar la enzima glucozoxidază, unde nucleele de oxigen s-au deplasat prin efectul tunel, în condiții fiziologice. Se consideră o particulă care, mișcându-se de la stânga la dreapta, cade pe o barieră de potențial de
Efectul tunel () [Corola-website/Science/299459_a_300788]
-
care păreau să rezolve probleme vechi de secole. Iată cum arată aceste universuri paralele: fizicienii spun că ele variază în forme (de la binecunoscuta "doughnut" - gogoașa cu gaură la mijloc, până la „coli de hârtie”), dimensiuni și caracteristici: „Într-un alt univers protonul poate să fie instabil, caz în care atomii se pot dizolva, iar ADN-ul nu se poate forma și astfel în aceste universuri nu poate exista viață inteligentă. Poate că există o lume de electroni și electricitate, poate un univers
Teoria M () [Corola-website/Science/298801_a_300130]
-
încărcată pozitiv - nucleul - în jurul căruia se mișcă electroni, la diferite distanțe. Notând sarcina cea mai mică, cunoscută, sau sarcina elementară cu e (e>0), s-a stabilit experimental că sarcina electronului este -e, iar sarcina elementară pozitivă este cea a protonului din nucleu (e). Așadar, în orice particulă constituentă a substanțelor, atomi, molecule, există sarcini pozitive și sarcini negative. Dacă particula este neutră, atunci n+ = n-. Deci, în procesul de electrizare, dacă vor fi smulși un număr de electroni, corpul respectiv
Electrostatică () [Corola-website/Science/298845_a_300174]
-
de vedere electric (q=0 C). Numărul neutronilor, N, ai unui atom poate fi diferit pentru nucleele atomice ale aceluiași element. Așa se formează izotopii. A fost teoretizat de Ernest Rutherford în 1920 ca fiind un dublet neutru format din proton și electron. îi se pot găsi (în mișcare) și în afara atomului. Aceștia interacționează numai cu nucleele atomice. Pătrunderea neutronilor în nuclee are loc cu o probabilitate ridicată, mai ales atunci când energia lor cinetica este scăzută. Acest fenomen poate afecta stabilitatea
Neutron () [Corola-website/Science/297812_a_299141]
-
este scăzută. Acest fenomen poate afecta stabilitatea atomului ("activare", "transformare" sau "stabilizare"). La trecerea neutronilor prin materie sunt posibile trei tipuri de interacții: "împrăștiere elastică", "împrăștiere inelastică" și "captura neutronica". Dacă un neutron se dezintegrează, acesta se separă într-un proton, un electron și un neutrin. Ajunși, prin ciocniri succesive, la energii joase și la un grad ridicat de împrăștiere, neutronii se comportă ca un gaz molecular care difuzează. Materialele care încetinesc neutronii prin ciocniri elastice, fără a-i absorbi, poartă
Neutron () [Corola-website/Science/297812_a_299141]
-
raze gamma cunoscute, iar detaliile privind rezultatele experimentale erau dificil de interpretat. Anul următor Irène Joliot-Curie și Frédéric Joliot în Paris, au arătat că, dacă aceasta radiație necunoscută a căzut pe parafina, sau orice alt compus cu hidrogen, ea ejecta protoni de energie foarte mare. Auzind rezultatelor de la Paris, în 1932, nici Rutherford, nici [James Chadwick]] au fost convinși de ipoteză razelor gamma. Chadwick a căutat neutronii lui Rutherford prin mai multe experimente de-a lungul anilor 1920, fără succes. Chadwick
Neutron () [Corola-website/Science/297812_a_299141]
-
repetat producerea radiației folosind beriliu, a utilizat metode mai bune pentru detectare, si care vizează radiația în parafina ca urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu
Neutron () [Corola-website/Science/297812_a_299141]
-
beriliu, a utilizat metode mai bune pentru detectare, si care vizează radiația în parafina ca urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu particule alfa emise de
Neutron () [Corola-website/Science/297812_a_299141]
-
bune pentru detectare, si care vizează radiația în parafina ca urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu particule alfa emise de poloniu radioactiv, s-a constatat
Neutron () [Corola-website/Science/297812_a_299141]
-
urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu particule alfa emise de poloniu radioactiv, s-a constatat că emite, la rândul său, particule invizibile necunoscute. Aceste particule
Neutron () [Corola-website/Science/297812_a_299141]
-
de beriliu bombardata cu particule alfa emise de poloniu radioactiv, s-a constatat că emite, la rândul său, particule invizibile necunoscute. Aceste particule invizibile au lovit apoi atomii de hidrogen sau de azot în repaus. Ca rezultat al acestor ciocniri protonii sau nucleele de azot au fost puși în mișcare, iar Chadwick le-a măsurat vitezele. formulă 1, unde m - masă particulei invizibile, v - viteza ei, formula 2-masă protonilor, formula 3 - viteza lor. În același mod, notând masă azotului și viteza să cu formulă 4
Neutron () [Corola-website/Science/297812_a_299141]
-
apoi atomii de hidrogen sau de azot în repaus. Ca rezultat al acestor ciocniri protonii sau nucleele de azot au fost puși în mișcare, iar Chadwick le-a măsurat vitezele. formulă 1, unde m - masă particulei invizibile, v - viteza ei, formula 2-masă protonilor, formula 3 - viteza lor. În același mod, notând masă azotului și viteza să cu formulă 4: formulă 5 formulă 6, masa azotului = 14, masa hidrogenului =1. De aici se obține: formulă 7 În experiențele sale, Chadwick a măsurat vitezele formulă 8. El a găsit că raportul
Neutron () [Corola-website/Science/297812_a_299141]
-
formulă 7 În experiențele sale, Chadwick a măsurat vitezele formulă 8. El a găsit că raportul formulă 9 era aproximativ 7,5. Prin urmare: formulă 10 Chadwick a repetat experiență cu alte substanțe și a găsit din nou masă aproximativ egală cu cea a protonului. El a dovedit existența neutronilor. În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis
Neutron () [Corola-website/Science/297812_a_299141]
-
În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un proton și un electron. După Modelul Standard al particulelor elementare neutronul ar fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite mai sus (captura
Neutron () [Corola-website/Science/297812_a_299141]
-
ul este o particulă subatomică fundamentală cu sarcină electrică negativă, fiind simbolizat e. Este un tip de lepton de spin ½ care participă la interacțiunile electromagnetice, masa acestuia fiind de aproximativ 1/1836 din cea a protonului. Împreună cu nucleul atomic, electronii formează atomul. Interacțiunea lor cu nucleii adiacenți este principala cauză a legăturilor chimice, electronii de valență fiind cei care participă la formarea acestor legături. Numele de electron provine de la cuvântul grecesc chihlimbar, ήλεκτρον. Acest material a
Electron () [Corola-website/Science/297813_a_299142]
-
a elementului. Deși tabelul periodic al elementelor prezintă și câteva anomalii, s-au făcut eforturi pentru a le explica cât mai bine. În 1913, Henry Moseley a introdus conceptul numărului atomic și a explicat legea periodicității din perspectiva numărului de protoni al fiecărui element. În același an, Niels Bohr a demonstrat că electronii sunt de fapt cei care stau la baza tabelului. În 1916, Gilbert Newton Lewis a explicat reacția chimică a elementelor prin interacțiuni electronice. Existența momentelor de spin la
Electron () [Corola-website/Science/297813_a_299142]
-
acestuia (raza electronului). Aceasta e o chestiune nebanală care nu e nedecisă până in prezent. Unele modele care admit electronul ca punctiform (rază nulă) presupun că momentele de spin se datorează conceptului de Zitterbewegung generat prin transformarea Foldy-Wuithuisen. Modelul structural proton electron necesită existența unei forțe atractive care să contracareze paradoxul Klein rezultat pe baza relației de nedeterminare. Este relativ stabil în solvenți ca amoniac ca săruri ale metalelor alcaline dar și în soluții apoase alcaline. Electronul face parte din clasa
Electron () [Corola-website/Science/297813_a_299142]
-
A diferit (adică aceleași proprietăți chimice dar proprietăți fizice diferite). Cuvântul "izotop" provine din grecescul "isos" (egal) și "topos" (loc). Toți izotopii unui element chimic au în învelișul electronic același număr de electroni, iar nucleele lor au același număr de protoni; ceea ce este diferit reprezintă numărul de neutroni. În nomenclatura științifică, izotopii unui element se scriu prin adăugarea unei cratime între numele elementului și numărul său de masă, astfel: heliu-3, carbon-12, carbon-14, oxigen-18, uraniu-238, iar prescurtat se notează folosind simbolul elementului
Izotop () [Corola-website/Science/297817_a_299146]
-
ii radioactivi artificiali, cunoscuți de asemenea ca radioizotopi, au fost produși pentru prima dată în 1933 de fizicienii francezi Marie și Pierre Joliot-Curie. Radioizotopii sunt produși pentru bombardarea naturală găsită a atomilor cu particulele nucleare, de asemenea ca neutronii, electronii, protonii, și particulele alfa, folosind particule acceleratorii. Separarea izotopică se bazează pe diferențele proprietăților fizico-chimice ale izotopilor aceluiași element (efectul izotopic). Efectul izotopic poate consta în diferențe ale punctului de fierbere sau de înghet, presiunii de vapori la o anumită temperatură
Izotop () [Corola-website/Science/297817_a_299146]
-
fizicii, modelele atomice au încorporat principii cuantice pentru a explica și prezice mai acest comportament. Fiecare atom este format dintr-un nucleu și din unul sau mai mulți electroni legați de nucleu. Nucleul este format din unul sau mai mulți protoni și, de obicei, dintr-un număr similar de neutroni. Protonii și neutronii se numesc nucleoni. Peste 99,94% din masa unui atom este concentrată în nucleu. Protonii au sarcină electrică pozitivă, electronii au sarcină electrică negativă, iar neutronii nu au
Atom () [Corola-website/Science/297795_a_299124]