1,245 matches
-
dependență. Un sistem mecanic admite maxim șase integrale prime distincte, aflarea tuturor acestora este echivalentă cu determinarea integralei generale a mișcării sistemului. Datorită faptului că anumite integrale prime exprimă conservarea unor importante mărimi fizice, cum ar fi impulsul, energia, momentul cinetic, etc., găsirea acestora are o importanță majoră în studiul sistemelor mecanice, ele având legături și cu anumite proprietăți generale ale timpului și spațiului raportate la legile naturii. Relațiile dintre integralele prime cu mărimile amintite sunt date prin teoreme generale ce
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
omogenitate a spațiului fizic. Legea conservării impulsului este una din cele mai importante legi ale fizicii, ea fiind valabilă nu numai pentru mecanica corpurilor macroscopice ci și în cazul interacțiunii particulelor microscopice, adică pentru atomi, nuclee atomice, electroni, etc. Momentul cinetic sau "momentul unghiular" al unui punct material este o mărime fizică dinamică care se definește ca produsul vectorial dintre vectorul de poziție și vectorul impuls: formula 21. Momentul cinetic măsoară „cantitatea de mișcare de rotație” similar impulsului care este o măsură
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
cazul interacțiunii particulelor microscopice, adică pentru atomi, nuclee atomice, electroni, etc. Momentul cinetic sau "momentul unghiular" al unui punct material este o mărime fizică dinamică care se definește ca produsul vectorial dintre vectorul de poziție și vectorul impuls: formula 21. Momentul cinetic măsoară „cantitatea de mișcare de rotație” similar impulsului care este o măsură a „cantității de mișcare de translație ”. Variația în timp a momentului cinetic este legată de momentul forței (cauza rotației) prin teorema momentului cinetic, numită și "teorema variației momentului
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
dinamică care se definește ca produsul vectorial dintre vectorul de poziție și vectorul impuls: formula 21. Momentul cinetic măsoară „cantitatea de mișcare de rotație” similar impulsului care este o măsură a „cantității de mișcare de translație ”. Variația în timp a momentului cinetic este legată de momentul forței (cauza rotației) prin teorema momentului cinetic, numită și "teorema variației momentului cinetic": Teorema variației momentului cinetic descrie evoluția dinamică a punctului material aflat în mișcare de rotație în jurul unui punct fix. Similar cu teorema variației
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
și vectorul impuls: formula 21. Momentul cinetic măsoară „cantitatea de mișcare de rotație” similar impulsului care este o măsură a „cantității de mișcare de translație ”. Variația în timp a momentului cinetic este legată de momentul forței (cauza rotației) prin teorema momentului cinetic, numită și "teorema variației momentului cinetic": Teorema variației momentului cinetic descrie evoluția dinamică a punctului material aflat în mișcare de rotație în jurul unui punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
măsoară „cantitatea de mișcare de rotație” similar impulsului care este o măsură a „cantității de mișcare de translație ”. Variația în timp a momentului cinetic este legată de momentul forței (cauza rotației) prin teorema momentului cinetic, numită și "teorema variației momentului cinetic": Teorema variației momentului cinetic descrie evoluția dinamică a punctului material aflat în mișcare de rotație în jurul unui punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul forței ce acționează asupra unui punct
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
de rotație” similar impulsului care este o măsură a „cantității de mișcare de translație ”. Variația în timp a momentului cinetic este legată de momentul forței (cauza rotației) prin teorema momentului cinetic, numită și "teorema variației momentului cinetic": Teorema variației momentului cinetic descrie evoluția dinamică a punctului material aflat în mișcare de rotație în jurul unui punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul forței ce acționează asupra unui punct material este egală cu
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
material aflat în mișcare de rotație în jurul unui punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul forței ce acționează asupra unui punct material este egală cu „viteza de variațe” a momentului cinetic. Dacă derivata momentului cinetic este pozitivă (momentul cinetic crește în valoare), atunci momentul forței este un "moment motor", cu alte cuvinte, are ca efect accelerarea rotației (viteza unghiulară crește și ea). Când derivata momentului cinetic este negativă, momentul forței se
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
de rotație în jurul unui punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul forței ce acționează asupra unui punct material este egală cu „viteza de variațe” a momentului cinetic. Dacă derivata momentului cinetic este pozitivă (momentul cinetic crește în valoare), atunci momentul forței este un "moment motor", cu alte cuvinte, are ca efect accelerarea rotației (viteza unghiulară crește și ea). Când derivata momentului cinetic este negativă, momentul forței se numește "moment rezistent" și
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
punct fix. Similar cu teorema variației impulsului, această teoremă arată că, din punct de vedere fizic, momentul forței ce acționează asupra unui punct material este egală cu „viteza de variațe” a momentului cinetic. Dacă derivata momentului cinetic este pozitivă (momentul cinetic crește în valoare), atunci momentul forței este un "moment motor", cu alte cuvinte, are ca efect accelerarea rotației (viteza unghiulară crește și ea). Când derivata momentului cinetic este negativă, momentul forței se numește "moment rezistent" și își manifestă efectul prin
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
viteza de variațe” a momentului cinetic. Dacă derivata momentului cinetic este pozitivă (momentul cinetic crește în valoare), atunci momentul forței este un "moment motor", cu alte cuvinte, are ca efect accelerarea rotației (viteza unghiulară crește și ea). Când derivata momentului cinetic este negativă, momentul forței se numește "moment rezistent" și își manifestă efectul prin încetinirea rotației(viteza unghiulară descrește). Există situații când momentul forței are valoarea nulă, ceea ce se poate întâmpla atunci când forța este nulă sau dacă are direcția paralelă cu
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
efectul prin încetinirea rotației(viteza unghiulară descrește). Există situații când momentul forței are valoarea nulă, ceea ce se poate întâmpla atunci când forța este nulă sau dacă are direcția paralelă cu direcția razei. În acest caz, se poate deduce "legea conservării momentului cinetic". Dacă momentul forței este egal cu zero, atunci din expresia teoremei momentului cinetic rezultă că derivata momentului cinetic se anulează: formula 24 Prin urmare: formula 25 Pe baza acestor considerente se poate enunța "legea conservării momentului cinetic al punctului" material": Relația formula 26
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
valoarea nulă, ceea ce se poate întâmpla atunci când forța este nulă sau dacă are direcția paralelă cu direcția razei. În acest caz, se poate deduce "legea conservării momentului cinetic". Dacă momentul forței este egal cu zero, atunci din expresia teoremei momentului cinetic rezultă că derivata momentului cinetic se anulează: formula 24 Prin urmare: formula 25 Pe baza acestor considerente se poate enunța "legea conservării momentului cinetic al punctului" material": Relația formula 26 reprezintă o integrală primă vectorială a mișcării, echivalentă cu trei integrale prime scalare
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
întâmpla atunci când forța este nulă sau dacă are direcția paralelă cu direcția razei. În acest caz, se poate deduce "legea conservării momentului cinetic". Dacă momentul forței este egal cu zero, atunci din expresia teoremei momentului cinetic rezultă că derivata momentului cinetic se anulează: formula 24 Prin urmare: formula 25 Pe baza acestor considerente se poate enunța "legea conservării momentului cinetic al punctului" material": Relația formula 26 reprezintă o integrală primă vectorială a mișcării, echivalentă cu trei integrale prime scalare: formula 27. Masa punctului material fiind
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
poate deduce "legea conservării momentului cinetic". Dacă momentul forței este egal cu zero, atunci din expresia teoremei momentului cinetic rezultă că derivata momentului cinetic se anulează: formula 24 Prin urmare: formula 25 Pe baza acestor considerente se poate enunța "legea conservării momentului cinetic al punctului" material": Relația formula 26 reprezintă o integrală primă vectorială a mișcării, echivalentă cu trei integrale prime scalare: formula 27. Masa punctului material fiind constantă, rezultă că invarianța momentului cinetic înseamnă, în fapt, constanța vectorului vitezei unghiulare. Existența mărimii mecanice moment
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
formula 25 Pe baza acestor considerente se poate enunța "legea conservării momentului cinetic al punctului" material": Relația formula 26 reprezintă o integrală primă vectorială a mișcării, echivalentă cu trei integrale prime scalare: formula 27. Masa punctului material fiind constantă, rezultă că invarianța momentului cinetic înseamnă, în fapt, constanța vectorului vitezei unghiulare. Existența mărimii mecanice moment cinetic și a legii de conservare a momentului cinetic ține de proprietatea de izotropie a spațiului fizic. Pentru cazul în care momentul rezultant al forțelor aplicate este permanent perpendicular
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
al punctului" material": Relația formula 26 reprezintă o integrală primă vectorială a mișcării, echivalentă cu trei integrale prime scalare: formula 27. Masa punctului material fiind constantă, rezultă că invarianța momentului cinetic înseamnă, în fapt, constanța vectorului vitezei unghiulare. Existența mărimii mecanice moment cinetic și a legii de conservare a momentului cinetic ține de proprietatea de izotropie a spațiului fizic. Pentru cazul în care momentul rezultant al forțelor aplicate este permanent perpendicular la o axă fixă formula 28 care trece prin punctul formula 29 (originea reperului
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
primă vectorială a mișcării, echivalentă cu trei integrale prime scalare: formula 27. Masa punctului material fiind constantă, rezultă că invarianța momentului cinetic înseamnă, în fapt, constanța vectorului vitezei unghiulare. Existența mărimii mecanice moment cinetic și a legii de conservare a momentului cinetic ține de proprietatea de izotropie a spațiului fizic. Pentru cazul în care momentul rezultant al forțelor aplicate este permanent perpendicular la o axă fixă formula 28 care trece prin punctul formula 29 (originea reperului cartezian), având versorul formula 30 se poate demonstra un
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
viteză: formula 58 (deplasarea elementară) și de expresia legii a doua a lui Newton formula 59, se pot scrie relațiile: formula 60. Se poate observa că lucrul mecanic elementar pentru o deplasare elementară reprezintă diferențiala totală exactă a unei mărimi, definită ca energia cinetică a punctului material: formula 61. Ținând cont de această definiție și de ultimele relații se poate formula "teorema energiei cinetice": De notat este faptul că pentru energie cinetică se justifică folosirea expresiei de „variație a energiei cinetice”, atunci când sistemul își modifică
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
Se poate observa că lucrul mecanic elementar pentru o deplasare elementară reprezintă diferențiala totală exactă a unei mărimi, definită ca energia cinetică a punctului material: formula 61. Ținând cont de această definiție și de ultimele relații se poate formula "teorema energiei cinetice": De notat este faptul că pentru energie cinetică se justifică folosirea expresiei de „variație a energiei cinetice”, atunci când sistemul își modifică starea de mișcare întrucât aceasta este un parametru de stare care are valoare determinată pentru o anumită stare dinamică
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
o deplasare elementară reprezintă diferențiala totală exactă a unei mărimi, definită ca energia cinetică a punctului material: formula 61. Ținând cont de această definiție și de ultimele relații se poate formula "teorema energiei cinetice": De notat este faptul că pentru energie cinetică se justifică folosirea expresiei de „variație a energiei cinetice”, atunci când sistemul își modifică starea de mișcare întrucât aceasta este un parametru de stare care are valoare determinată pentru o anumită stare dinamică. Lucrul mecanic, fiind o funcție de schimbare (transfer), mărime
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
mărimi, definită ca energia cinetică a punctului material: formula 61. Ținând cont de această definiție și de ultimele relații se poate formula "teorema energiei cinetice": De notat este faptul că pentru energie cinetică se justifică folosirea expresiei de „variație a energiei cinetice”, atunci când sistemul își modifică starea de mișcare întrucât aceasta este un parametru de stare care are valoare determinată pentru o anumită stare dinamică. Lucrul mecanic, fiind o funcție de schimbare (transfer), mărime ce depinde numai de starea dinamică inițială și finală
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
formula 62, prin integrare între momentele formula 63 și formula 64, pentru care vitezele punctului material sunt formula 65, respectiv formula 66, se găsește pentru lucru mecanic expresia:formula 67. Adică: lucrul mecanic al forței formula 68 între momentele formula 69 și formula 70 este egal cu variația energiei cinetice între cele două momente, ceea ce se poate scrie condensat sub forma:formula 71. Dacă lucrul mecanic este pozitiv, adică este lucrul mecanic al unei forțe motoare, atunci se numește "lucru motor" și contribuie la creșterea energiei cinetice. Pentru un lucru mecanic
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
egal cu variația energiei cinetice între cele două momente, ceea ce se poate scrie condensat sub forma:formula 71. Dacă lucrul mecanic este pozitiv, adică este lucrul mecanic al unei forțe motoare, atunci se numește "lucru motor" și contribuie la creșterea energiei cinetice. Pentru un lucru mecanic negativ care este produs de o forță rezistentă se utilizează denumirea de "lucru rezistent" și el produce scăderea energiei cinetice. Dacă punctul material este plasat într-un câmp de forțe potențial, atunci există o funcție scalară
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
lucrul mecanic al unei forțe motoare, atunci se numește "lucru motor" și contribuie la creșterea energiei cinetice. Pentru un lucru mecanic negativ care este produs de o forță rezistentă se utilizează denumirea de "lucru rezistent" și el produce scăderea energiei cinetice. Dacă punctul material este plasat într-un câmp de forțe potențial, atunci există o funcție scalară formula 72, astfel încât câmpul de forțe ce acționează asupra punctului material se poate scrie sub forma formula 73, unde prin formula 74 este notat operatorul diferențial gradient
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]