3,093 matches
-
În final, vom obține aceeași soluție ca în mecanica lui Lagrange sau folosind legile de mișcare Newtoniene. Principala atracție a hamiltonianului fiind aceea că, oferă o bază pentru rezultate mai profunde în teoria mecanicii clasice, precum și legătura ei cu mecanica cuantică. Sistemele Hamiltoniene pot fi înțelese ca spații fibrate " E" peste timpul "R", cu fibrajul " E", "t" ∈ "R", "R" fiind spațiul pozițiilor. Astfel Lagrangianul este o funcție pe un spațiu fibrat neted "J" peste "E". Luând transformata Legendre a Lagrangianului, obținem
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
fibrat dual, a cărei fibră la timpul "t" este spațiul cotangent "T""E", care este înzestrat cu un spațiu vectorial natural, iar această ultimă funcție este Hamiltonianul. Ecuațiile lui Hamilton sunt bune pentru mecanica clasică, dar nu și pentru mecanica cuantică, deoarece ecuațiile diferențiale în cauză precizează că se cunosc simultan și cu exactitate poziția și impulsul unei particule, oricare ar fi timpul t. Cu toate acestea, ecuațiile pot fi generalizate pentru a fi apoi extinse la mecanica cuantică, precum și la
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
pentru mecanica cuantică, deoarece ecuațiile diferențiale în cauză precizează că se cunosc simultan și cu exactitate poziția și impulsul unei particule, oricare ar fi timpul t. Cu toate acestea, ecuațiile pot fi generalizate pentru a fi apoi extinse la mecanica cuantică, precum și la mecanica clasică, prin deformarea algebrei Poisson peste "p" și "q" pentru o algebră de paranteze Moyal. Mai precis, sub o formă mai generală ecuația lui Hamilton se scrie: unde "f" este o funcție de "p" și "q", iar " H
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
algebra Lie, care specifică: o paranteză Poisson este numele pentru o paranteză Lie într-o algebră Poisson. Aceste paranteze Poisson pot fi extinse la paranteze Moyal, corespunzătoare unei algebre Lie neechivalentă, după cum a dovedit H Groenewold, descriind difuzia din mecanica cuantică în spațiul fazelor (a se vedea principiul de incertitudine și cuantificare Weyl). Această abordare algebrică, nu numai că permite prelungirea probabilității de distribuție din spațiul fazelor la probabilitatea de distribuție cvasi-Wigner, dar o simplă paranteză Poisson clasică, oferă un puternic
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
formula 43 este potențialul electric scalar, iar formula 44 sunt componentele potențialului magnetic vectorial. Impulsul generalizat poate fi derivat din: Rearanjând, putem exprima viteza în funcție de impuls: Dacă le substituim în Hamiltonian și le rearanjăm, obținem: Acestă ecuație este frecvent folosită în mecanica cuantică. Lagrangianul pentru o particulă relativistă încărcată este dat de: Impulsul canonic total al particulei este: adică, suma impulsului și al potențialului cinetic. Rezolvând , obținem viteza: Deci Hamiltonianul este: din care obținem ecuația forței (echivalentă cu ecuația Euler-Lagrange): pe care derivând
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
În mecanica cuantică și fizica particulelor elementare, se numește spin momentul cinetic intrinsec al unei particule (electron, proton, atom, ...) În mecanică clasică, impulsul unghiular al unui corp este asociat cu rotația corpului în jurul propriului său centru de masă. În mecanica cuantică, spinul este
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
În mecanica cuantică și fizica particulelor elementare, se numește spin momentul cinetic intrinsec al unei particule (electron, proton, atom, ...) În mecanică clasică, impulsul unghiular al unui corp este asociat cu rotația corpului în jurul propriului său centru de masă. În mecanica cuantică, spinul este deosebit de important pentru sistemele de dimensiuni atomice, cum ar fi atomii, protonii, sau electronii. Astfel de particule au anumite caracteristici "neclasice" iar pentru ele, impulsul unghiular intrinsec nu poate fi asociat cu o "rotație" ci se referă doar
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
sħ=½ħ", astfel încât proiecția este: "s=mħ=±½ħ". După introducerea spinului electronului au fost fundamentate atât proprietățile magnetice ale substanțelor, cât și structura de multiplet a liniilor spectrale emise de atomi. Una dintre cele mai remarcabile descoperiri asociate cu fizica cuantică este faptul ca particulele elementare pot avea impuls unghiular nenul. Particulele elementare sunt particule ce nu pot fi divizate în unități mai mici, cum ar fi fotonul, electronul, si diferitele quarkuri. Studii teoretice și experimentale au arătat ca spinul acestor
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
care se rotesc în jurul unui centru comun de masă; din câte se știe, aceste particule elementare sunt cu adevarat punctiforme. Spinul lor este o proprietate fizică intrinseca a acestor particule, din aceeași categorie cu masa sau sarcină electrică. Conform mecanicii cuantice, impulsul unghiular al oricărui sistem este cuantificat. Modulul impulsului unghiular formulă 1, poate lua valori doar conform acestei relații: unde formulă 3 este constantă lui Planck redusă, iar "s" este un numar nenegativ întreg sau semiîntreg (0, 1/2, 1, 3/2
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
sistem este cuantificat. Modulul impulsului unghiular formulă 1, poate lua valori doar conform acestei relații: unde formulă 3 este constantă lui Planck redusă, iar "s" este un numar nenegativ întreg sau semiîntreg (0, 1/2, 1, 3/2, 2, etc.), denumit numărul cuantic de spin. De exemplu, electronii (care sunt particule elementare) sunt denumite particule cu "spin-1/2" deoarece spinul lor este "s = 1/2". Spinul fiecărei particule elementare are o valoare "S" fixă care depinde doar de tipul particulei, si nu poate
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
câmpului. La scară microscopică, în procese ca emisia și absorbția de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice a dus la teoria cuantică relativistă a interacțiunii electromagnetice: electrodinamica cuantică. Undele electromagnetice au fost generate în laborator de Hertz, la câțiva ani după moartea lui Maxwell. Aplicațiile lor în electrotehnică, radiotehnică și tehnologia comunicațiilor fără fir în general au
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
procese ca emisia și absorbția de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice a dus la teoria cuantică relativistă a interacțiunii electromagnetice: electrodinamica cuantică. Undele electromagnetice au fost generate în laborator de Hertz, la câțiva ani după moartea lui Maxwell. Aplicațiile lor în electrotehnică, radiotehnică și tehnologia comunicațiilor fără fir în general au avut un impact decisiv asupra
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice a dus la teoria cuantică relativistă a interacțiunii electromagnetice: electrodinamica cuantică. Undele electromagnetice au fost generate în laborator de Hertz, la câțiva ani după moartea lui Maxwell. Aplicațiile lor în electrotehnică, radiotehnică și tehnologia comunicațiilor fără fir în general au avut un impact decisiv asupra civilizației moderne. Interacțiunea electromagnetică este una
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
vidului" (electrică) Ele sunt așadar legate prin relația unde formula 18 este viteza luminii în vid, a cărei valoare e definită ca În studiile teoretice, în special în cele privind electrodinamica la scară microscopică, este preferat "sistemul de unități Gauss"; electrodinamica cuantică utilizează "sistemul de unități Heaviside-Lorentz". În 1864, Maxwell a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, făcând observația: „Aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
În mecanica cuantică, Hamiltonianul ("H") este operatorul corespunzător energiei totale a sistemului. Spectrul lui este un set de rezultate posibile, atunci când este măsurată energia totală a sistemului. Hamiltonianul este de o importanță fundamentală în cele mai multe formulări din teoria cuantică, datorită relației de evoluție
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
În mecanica cuantică, Hamiltonianul ("H") este operatorul corespunzător energiei totale a sistemului. Spectrul lui este un set de rezultate posibile, atunci când este măsurată energia totală a sistemului. Hamiltonianul este de o importanță fundamentală în cele mai multe formulări din teoria cuantică, datorită relației de evoluție în timp a unui sistem. Prin analogie cu mecanica clasică, Hamiltonianul este exprimat ca o sumă de operatori corespunzând energiei cinetice și energiei potențiale ale unui sistem, scris sub forma: De notat că operatorul V este
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
gradient, "i" unitatea imaginară, iar formula 5 este constanta lui Planck redusă. Combinând toate acestea cu termenul potențial, obținem: care ne permite să aplicăm Hamiltonianul sistemelor descrise de funcția de undă formula 7. Aceasta este aproximația uzuală folosită în introducerea din mecanica cuantică, când se folosește formalismul undelor mecanice al lui Schrödinger. Totuși, în formalismul mai general al lui Dirac, Hamiltonianul este implementat ca un operator din spațiul Hilbert la modul următor: Din punct de vedere riguros matematic, presupunerile de mai sus trebuiesc
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
riguros matematic, presupunerile de mai sus trebuiesc verificate cu grijă. Operatorii din spațiul Hilbert infinit-dimensional nu au nevoie de valori proprii (deoarece setul de valori proprii nu coincid in mod necesar cu spectrul unui operator). Totuși, toate calculele din mecanica cuantică pot fi făcute folosind formularea fizică. Hamiltonianul generează evoluția în timp a stării cuantice. Dacă formula 10 este starea unui sistem la timpul "t", atunci: Această ecuație este cunoscută drept ecuația lui Schrödinger (ia aceeași formă cu ecuația Hamilton-Jacobi). Dându-se
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
infinit-dimensional nu au nevoie de valori proprii (deoarece setul de valori proprii nu coincid in mod necesar cu spectrul unui operator). Totuși, toate calculele din mecanica cuantică pot fi făcute folosind formularea fizică. Hamiltonianul generează evoluția în timp a stării cuantice. Dacă formula 10 este starea unui sistem la timpul "t", atunci: Această ecuație este cunoscută drept ecuația lui Schrödinger (ia aceeași formă cu ecuația Hamilton-Jacobi). Dându-se starea inițială la "t" = 0, putem integra ecuația și obținem starea sistemului la orice
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
analiză funcțională. În cazul funcției exponențiale este suficient calculul continuu, sau cel puțin calculul funcțional holomorfic. Datorită proprietății de *-homeomorfism a calculului funcțional, operatorul este un operator unitar. Este un "operator" de "evoluție în timp" sau "propagator" al unui sistem cuantic închis. Dacă Hamiltonianul este independent de timp, atunci, {U(t)} formează un grup unitar parametric (mai mult decât un semigrup); acest lucru dând o semnificație crescută principiului fizic al echilibrului detaliat. În multe sisteme, două sau mai multe stări energetice
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
dualismul ei: Astfel, valoarea scontată a observabilei " G" este conservată pentru orice stare a sistemului. În cazul unei particule libere cantitatea care se conservă este momentul unghiular. Ecuațiile lui Hamilton din mecanica Hamiltoniană clasică au o analogie directă în mecanica cuantică. Să presupunem că avem un set de stări de bază formula 23, care nu sunt în mod necesar stări proprii de energie. Pentru claritate, presupunem că ele sunt discrete, deci sunt ortonormate, adică: De notat că aceste stări de bază sunt
Hamiltonian (mecanică cuantică) () [Corola-website/Science/319827_a_321156]
-
are diferite înțelesuri în funcție de contextul în care este definit. În fizică, timpul este o dimensiune a naturii și poate fi văzută ca o măsură a schimbării. În accepția fizicii clasice, timpul este un "continuu". Fizica modernă (mai precis, teoria mecanicii cuantice) dispută însă această calitate, sugerând că ar exista doar continuu spațiu-timp. În filosofie, timpul este definit ca un flux neîntrerupt, ireversibil, care nu poate curge decât într-o singură direcție. Este deci un continuu în care evenimentele se succed de la
Timp () [Corola-website/Science/299057_a_300386]
-
identice. Această diferență esoterica trebuie însă să ducă la efecte calorimetrice măsurabile, independente de cât sunt culorile de apropiate. În continuare, prezentăm mai detaliat argumentele care conduc la paradox, unele probleme pe care le ridică și rolul pe care mecanica cuantică poate să îl joace. Pentru un sistem cu un conținut material fix (masă, număr de moli ficși), se poate defini entropia oricărei stări relativ la o stare inițială dată cu ajutorul unei transformări reversibile:formulă 5 unde dQ este căldură transmisă sistemului în
Paradoxul lui Gibbs (termodinamică) () [Corola-website/Science/312269_a_313598]
-
produce creșterea entropiei "S" cu "(n+n)Rln2". În concluzie avem de a face cu "două" expresii pentru entropie, cu număr diferit de variabile, dintre care una (S) este compatibilă cu un număr mai mare de procese decât cealaltă. Mecanica cuantică pare să ofere în mod natural o "soluție" a paradoxului lui Gibbs, deoarece oferă, prin produsul scalar, o măsură naturală a apropierii între două stări. Pentru aceasta, luăm în considerație gradele interne de libertate ale particulelor care constituie gazele și
Paradoxul lui Gibbs (termodinamică) () [Corola-website/Science/312269_a_313598]
-
creșterea de entropie datorită amestecului scade continuu către zero. Pare astfel că discontinuitatea care apare în termodinamica clasică în limita de "totală similaritate" dispare acum. Acest argument este expus în detaliu în și se bazează pe definiția entropiei în mecanica cuantică dată de J.v.Neumann în cartea sa . După J.v.Neumann entropia unui mol de gaz format din particule cu spin 1/2 la temperatura Ț în volumul V este dat de:formulă 18 unde "S(clasic)" este dat de ecuația (S
Paradoxul lui Gibbs (termodinamică) () [Corola-website/Science/312269_a_313598]