12,084 matches
-
3 ms, în timp ce mușchiul solear, ce conține fibre lente, necesită 100 ms pentru a atinge tensiunea maximă. Alte caracteristici pentru fibrele lente, de tip I sunt: o capacitate mare de respirație aerobă, un număr mare de capilare, mitocondrii și enzime respiratorii în cantitate crescută, ca și mioglobina, de unde denumirea de “fibre roșii”. Fibrele rapide II au capilare și mitocondrii puține, și mioglobină puțină, de aceea se numesc “fibre albe”. Aceste fibre sunt adaptate la respiratia anaerobă, cu o rezervă de glicogen
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
energiei necesare creșterii performanței fizice. Tipul de fibre musculare este determinat de inervație, de aceea prin antrenament tipul de fibră musculară nu se poate schimba. Fibrele se pot adapta prin antrenament, sporindu-și cantitatea de mioglobină și de enzime aerobice respiratorii; preluarea oxigenului poate fi crescută cu 20%. Fibrele își sporesc și conținutul de trigliceride, o sursă alternativă de energie, pentru a salva stocurile de glicogen. Antrenamentele (contracții musculare frecvente, contra unei rezistențe mari) produc dezvoltarea musculaturii prin hipertrofie. Crește mărimea
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
la stimularea fibrelor senzitive ale unui nerv după un timp de latență mult mai lung decât pentru potențialul M; excitația parcurge arcul reflex). 7.3. Fiziologia miocitului neted Musculatura netedă are un rol important în organism, intrând în componența căilor respiratorii, digestive, urinare și a vaselor sanguine. In organism mușchiul neted este localizat vascular sau non-vascular; în peretele viscerelor cavitare (gastro intestinal, traheo-bronșic, ureterovezical, tubar-uterin) sau în structurile globului ocular (iris, mușchi ciliar). 7.3.1. Clasificare și organizare tisulară Mușchiul
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
și 2-5 μm diametru). Celula musculară netedă este uninucleată. In pereții organelor interne celulele musculare nu funcționează independent, existând o interdependență celulară, datorită conectării celulare în serie și în paralel. Mușchiul neted este dispus în straturi de formă tubulară (căi respiratorii, vase) sau în formă de sac. Celulele musculare sunt așezate fie circumferențial (circular); contracțiile acestor mușchi scad diametrul tubular și cresc rezistența la curgerea conținutului fluid fie circular și longitudinal (dublu strat), structură mai complexă necesară acțiunilor mecanice (de exemplu
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
sânge circulant (volemie). In același context, al rolului de lichid circulant, sângele susține celelalte funcții de nutriție la nivelul organismului, participând la: respirație, prin capacitatea crescută de transport pentru O2 și CO2, precum și prin mecanismele ce asigură schimbul de gaze respiratorii la nivel pulmonar și tisular; digestie, prin absorbția nutrimentelor prin peretele tubului digestiv și distribuția lor în toate țesuturile; excreție, prin îndepărtarea din țesut a produșilor finali de catabolism și a altor substanțe cu tendință de acumulare tisulară, asigurând transportul
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
proteine, electroliți și alte componente a sistemelor energetice. 95% din proteinele eritrocitare sunt reprezentate de hemoglobină, restul este reprezentat de enzime din sistemul energetic cu activitate catalitică. Hematiile au multiple funcții dar cea mai importantă este de transport al gazelor respiratorii (O2 și CO2). 10.1. Membrana eritrocitară Membrana eritrocitară, ca și a altor celule are o structură lipo proteică. Lipidele membranare sunt de trei tipuri: fosfolipide, colesterol și cantități mici de glicolipide. Fosfolipidele au un pol hidrofil și unul hidrofob
FIZIOLOGIE UMANA CELULA SI MEDIUL INTERN by Dragomir Nicolae Serban Ionela Lăcrămioara Serban Walther Bild () [Corola-publishinghouse/Science/1307_a_2105]
-
respirațiunei încet și nebăgat în seamă de auditor, încît ne lăsăm cu deplină siguranță elucubrațiunilor sale celor mai pasionate și declamațiunei celor mai întortocheate compozițiuni de frază, căci [prin] neauzibilitatea respirațiunei nu se naște în noi îngrijirea despre nesuficiența puterei respiratorii. În perioade lungi am de-aceea de consiliat ca vorbitorul să-și împartă respirațiunea, căci numai prin aceasta este el în stare de-a scăpa de îndoitul pericol, sughiț mai întîi, a întreruperei sensului logic, și, a doua, a audibilității
Opere 14 by Mihai Eminescu [Corola-publishinghouse/Imaginative/295592_a_296921]
-
circulației limfatice 136 16.4. Rolul circulației limfatice 137 FIZIOLOGIA RESPIRATIEI I. L. Serban, D. N. Serban 17. Introducere în fiziologia respirației 138 18. Ventilația alveolară 138 18.1. Date de anatomie funcțională a aparatului respirator 138 18.2. Funcțiile căilor respiratorii 140 18.3. Forțe care acționează asupra plămânului 144 18.4. Ciclul respirator 147 18.4.1. Inspirul 148 18.4.2. Expirul 149 18.4.3. Volume și debite respiratorii 150 18.4.4. Lucrul mecanic respirator 152 18
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
funcțională a aparatului respirator 138 18.2. Funcțiile căilor respiratorii 140 18.3. Forțe care acționează asupra plămânului 144 18.4. Ciclul respirator 147 18.4.1. Inspirul 148 18.4.2. Expirul 149 18.4.3. Volume și debite respiratorii 150 18.4.4. Lucrul mecanic respirator 152 18.5. Efectul ventilator alveolar al aerului vehiculat 152 18.6. Controlul ventilației 155 18.6.1. Chemoreceptorii centrali 155 18.6.2. Chemoreceptorii periferici 156 18.6.3. Receptorii pulmonari 157
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
pulmonari 157 18.6.4. Receptorii de iritație din căile aeriene 158 18.6.5. Alți receptori implicați în controlul ventilației 159 18.6.6. Centrii nervoși 159 18.6.7. Efectorii 162 18.6.8. Controlul integrativ al mișcarilor respiratorii 162 19. Hematoza pulmonară și alte funcții ale plămânului 167 19.1. Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
receptori implicați în controlul ventilației 159 18.6.6. Centrii nervoși 159 18.6.7. Efectorii 162 18.6.8. Controlul integrativ al mișcarilor respiratorii 162 19. Hematoza pulmonară și alte funcții ale plămânului 167 19.1. Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul sanguin al gazelor respiratorii și schimbul tisular 178 20.1. Transportul sanguin al oxigenului 179 20.2. Transportul sanguin al bioxidului de carbon 182 20.3. Schimbul de gaze respiratorii la nivel tisular 185 FIZIOLOGIA EXCRETIEI W. Bild 21. Excreția 188 21.1. Funcțiile
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul sanguin al gazelor respiratorii și schimbul tisular 178 20.1. Transportul sanguin al oxigenului 179 20.2. Transportul sanguin al bioxidului de carbon 182 20.3. Schimbul de gaze respiratorii la nivel tisular 185 FIZIOLOGIA EXCRETIEI W. Bild 21. Excreția 188 21.1. Funcțiile rinichiului 188 22. Rinichii 189 23. Vascularizația renală 190 23.1. Microvascularizația 190 24. Microanatomia nefronului 191 24.1. Corpusculul renal 192 24.2. Membrana filtrantă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
secvență predeterminată, a unui număr mare de mușchi striați de la nivelul cavității bucale, faringelui și esofagului (excepție, mușchiul esofagian distal care este un mușchi neted). La fătul uman, deglutiția apare în a 12-a săptămână de viață intrauterină, deși mișcările respiratorii și de sucțiune apar după a 24-a săptămână de viață intrauterină. Deglutiția este, deci, o funcție “ancestrală”, mult mai veche decât respirația. Deglutiția se desfășoară în trei etape: timpul bucal, faringian și esofagian. Timpul bucal Bolul alimentar este depus
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
aerul inspirat este bogat în CO2 vasoconstricția simpatică activată prin răspuns ischemic central contracarează chiar și vasodilația directă produsă de hipoxie și hipercapnee, în toate regiunile cu excepția creierului și pielii. Hiperventilația este cea care compensează modificările de concentrație a gazelor respiratorii și permite normalizarea presiunii arteriale și a distribuției debitului sanguin. Un reflex vagal ce produce bradicardie, hipotensiune și apnee poate fi activat în condiții patologice prin stimularea chimică a ventriculului stâng sau a receptorilor coronarieni (și a unora similari din
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
de axon de la nivel cutanat. Impulsurile din fibrele senzitive sunt conduse prin ramuri colaterale speciale înapoi la vase, unde duc la eliberarea de substanță P, care determină vasodilatație și creșterea permeabilității peretelui capilarelor. Mecanismul nervos al oscilațiilor presiunii arteriale Undele respiratorii (~5 mm Hg; 0,2 Hz) se explică prin influența centrului respirator asupra celui vasomotor și prin expansiune vasculară inspiratorie cu efect mecanic direct și reflex. Undele vasomotorii (max. 2040 mm Hg; 0,05-0,1 Hz) derivă din oscilații ale
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
de transport la nivel molecular, bazat pe gradientul de concentrație, nefiind influențată de filtrare sau reabsorbție. Substanțele liposolubile trec ușor prin plasmalemă (coeficientul de partiție ulei/plasmă este un bun indicator pentru rata de difuzie). Acesta este și cazul gazelor respiratorii. Astfel, aportul de O2 la nivel celular nu este limitat de difuzie sau de numărul de capilare deschise. De altfel, în multe țesuturi conținutul de O2 al sângelui este deja scăzut la 80% la intrarea în capilar, ca urmare a
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
și mai rapidă. In insuficiența cardiacă dreaptă și în cea globală unda a crește foarte mult, iar depresiunea y diminuă. 15.4. Factori ce determină și influențează circulația venoasă Energia necesară pentru returul venos este furnizată de activitatea inimii, mișcările respiratorii, contracția mușchilor membrelor. Activitatea de pompă a inimii este factorul determinant major. Intoarcerea venoasă este rezultatul diferenței de presiune dintre capilare și atriul de destinație, curgerea sângelui în vene spre cord fiind deci în ultimă instanță determinată de pompa ventriculară
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
care apoi este distribuit la țesuturi prin intermediul circulației. Omul și alte animale superioare preiau oxigen din aer și eliberează bioxid de carbon în vederea satisfacerii nevoilor metabolice ale țesuturilor, fenomen care se numește schimb de gaze și care reprezintă esența fiziologiei respiratorii. Se descriu următoarele procese implicate în schimbul gazos: ventilația alveolară, procesul prin care aerul alveolar este permanent împrospătat cu aer de proveniență atmosferică, permițând aducerea unor noi cantități de oxigen și îndepărtarea bioxidului de carbon produs de organism; difuzia gazelor respiratorii
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
respiratorii. Se descriu următoarele procese implicate în schimbul gazos: ventilația alveolară, procesul prin care aerul alveolar este permanent împrospătat cu aer de proveniență atmosferică, permițând aducerea unor noi cantități de oxigen și îndepărtarea bioxidului de carbon produs de organism; difuzia gazelor respiratorii (oxigen și bioxid de carbon) prin peretele alveolelor pulmonare, de fapt schimbul de gaze respiratorii între aerul alveolar și sângele din capilarele pulmonare, prin “bariera alveolo-capilară”; transportul gazelor respiratorii de câtre sângele circulant ; transferul de gaze respiratorii între capilarele sistemice
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
este permanent împrospătat cu aer de proveniență atmosferică, permițând aducerea unor noi cantități de oxigen și îndepărtarea bioxidului de carbon produs de organism; difuzia gazelor respiratorii (oxigen și bioxid de carbon) prin peretele alveolelor pulmonare, de fapt schimbul de gaze respiratorii între aerul alveolar și sângele din capilarele pulmonare, prin “bariera alveolo-capilară”; transportul gazelor respiratorii de câtre sângele circulant ; transferul de gaze respiratorii între capilarele sistemice și celule; respirația celulară, adică utilizarea oxigenului de către celule și producera de bioxid de carbon
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
oxigen și îndepărtarea bioxidului de carbon produs de organism; difuzia gazelor respiratorii (oxigen și bioxid de carbon) prin peretele alveolelor pulmonare, de fapt schimbul de gaze respiratorii între aerul alveolar și sângele din capilarele pulmonare, prin “bariera alveolo-capilară”; transportul gazelor respiratorii de câtre sângele circulant ; transferul de gaze respiratorii între capilarele sistemice și celule; respirația celulară, adică utilizarea oxigenului de către celule și producera de bioxid de carbon de către acestea. Așa-zisul aparat respirator asigură, în mod pasiv, numai primele două procese
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
organism; difuzia gazelor respiratorii (oxigen și bioxid de carbon) prin peretele alveolelor pulmonare, de fapt schimbul de gaze respiratorii între aerul alveolar și sângele din capilarele pulmonare, prin “bariera alveolo-capilară”; transportul gazelor respiratorii de câtre sângele circulant ; transferul de gaze respiratorii între capilarele sistemice și celule; respirația celulară, adică utilizarea oxigenului de către celule și producera de bioxid de carbon de către acestea. Așa-zisul aparat respirator asigură, în mod pasiv, numai primele două procese, adică ventilația și schimbul de gaze la nivel
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
dreaptă și stângă; căile aeriene continuă să se bifurce ajungând la diametre din ce în ce mai mici. Bronhiile principale prezintă la nivelul peretelui lor inele cartilaginoase, iar bronhiolele nu posedă astfel de structuri cartilaginoase, putând ușor să se colabeze. Bronhiolele finale, numite și respiratorii, se ramifică în scurte canale fără perete muscular, canalele alveolare (fig. 62); fiecare canal comunică direct cu un număr de alveole pulmonare, locul unde are loc schimbul de gaze respiratorii. Prezența mucusului și cililor la nivelul bronhiilor și bronhiolelor conferă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]
-
cartilaginoase, putând ușor să se colabeze. Bronhiolele finale, numite și respiratorii, se ramifică în scurte canale fără perete muscular, canalele alveolare (fig. 62); fiecare canal comunică direct cu un număr de alveole pulmonare, locul unde are loc schimbul de gaze respiratorii. Prezența mucusului și cililor la nivelul bronhiilor și bronhiolelor conferă protecție plămânilor față de agresiunile externe (vezi mai jos). Alveolele prezintă un perete epitelial foarte subțire acoperit cu un strat fin de lichid alveolar (surfactant pulmonar). Plămânii sunt acoperiți la exterior
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2284]