1,192 matches
-
pentru intervalul de timp înainte de actuala eră geologică Fanerozoic și este împărțit în mai multe ere pe scala de timp geologică. Acesta se întinde de la formarea Pământului în jur de 4500 milioane de ani până la începutul perioadei Cambrian, când organisme macroscopice au apărut pentru prima dată din abundență cu aproximativ 542 milioane de ani în urmă. este numită astfel pentru că precede era Cambrian, prima perioadă de Eon fanerozoic, care este numit după numele roman pentru Țara Galilor, Cambria, unde rocile de această
Precambrian () [Corola-website/Science/319526_a_320855]
-
Existența mărimii mecanice impuls și a legii de conservare a impulsului este legată de proprietatea de omogenitate a spațiului fizic. Legea conservării impulsului este una din cele mai importante legi ale fizicii, ea fiind valabilă nu numai pentru mecanica corpurilor macroscopice ci și în cazul interacțiunii particulelor microscopice, adică pentru atomi, nuclee atomice, electroni, etc. Momentul cinetic sau "momentul unghiular" al unui punct material este o mărime fizică dinamică care se definește ca produsul vectorial dintre vectorul de poziție și vectorul
Teoreme generale ale mecanicii () [Corola-website/Science/319681_a_321010]
-
direct între ele în cadrul sistemului, aflat în echilibru termodinamic . Adesea se confundă noțiunea de „fază” cu cea de „stare de agregare”, mai veche și mai imprecisă. O stare de agregare este o formă a materiei caracterizată prin anumite proprietăți fizice macroscopice. De exemplu, un sistem compus din apă și gheață constă din două faze, în două stări de agregare diferite (una lichidă și cealaltă solidă); un sistem compus din apă și ulei constă și el din două faze, dar ambele în
Fază (termodinamică) () [Corola-website/Science/319813_a_321142]
-
un lichid multifazic. Se confundă de asemenea noțiunea de tranziție de fază cu cea de „schimbare a stării de agregare”. În tranziții de fază cum sunt evaporarea și condensarea sau topirea și solidificarea proprietățile sistemului variază discontinuu, fenomenul manifestându-se macroscopic ca schimbare a stării de agregare. Dar în tranziția de fază în care un material feromagnetic încălzit deasupra punctului Curie devine paramagnetic, proprietățile macroscopice variază în mod continuu, fără schimbarea stării de agregare. În acest caz se vorbește despre o
Fază (termodinamică) () [Corola-website/Science/319813_a_321142]
-
cum sunt evaporarea și condensarea sau topirea și solidificarea proprietățile sistemului variază discontinuu, fenomenul manifestându-se macroscopic ca schimbare a stării de agregare. Dar în tranziția de fază în care un material feromagnetic încălzit deasupra punctului Curie devine paramagnetic, proprietățile macroscopice variază în mod continuu, fără schimbarea stării de agregare. În acest caz se vorbește despre o „tranziție de fază de specia a doua” .
Fază (termodinamică) () [Corola-website/Science/319813_a_321142]
-
proprietăților materialelor, în conformitate cu cerințele impuse de destinație. Un material compozit reprezinta o combinație între două sau mai multe materiale diferite din punct de vedere chimic, cu o interfață între ele. Materialele constituente își mențin identitatea separată (cel puțin la nivel macroscopic) în compozit, totuși combinarea lor generează ansamblului proprietăți și caracteristici diferite de cele ale materialelor componente în parte. Unul din materiale se numește matrice și este definit ca formând faza continuă. Celălalt element principal poartă numele de armatura (ranforsare) și
Material compozit () [Corola-website/Science/319059_a_320388]
-
Fizica statistică reunește trei discipline ale fizicii teoretice, înrudite prin obiectul de studiu dar diferite prin metodele utilizate: "termodinamică", "mecanică statistică" și "teorie cinetică". Obiectul de studiu comun sunt fenomenele în care, într-un sistem macroscopic, are loc un transfer de lucru mecanic, căldură sau substanță. Termodinamica nu utilizează metode statistice, dar principiile ei se justifică prin rezultatele celorlalte două discipline. În teoria cinetică proprietățile macroscopice ale unui sistem sunt definite ca "valorile cele mai probabile
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
de studiu comun sunt fenomenele în care, într-un sistem macroscopic, are loc un transfer de lucru mecanic, căldură sau substanță. Termodinamica nu utilizează metode statistice, dar principiile ei se justifică prin rezultatele celorlalte două discipline. În teoria cinetică proprietățile macroscopice ale unui sistem sunt definite ca "valorile cele mai probabile" ale mărimilor microscopice corespunzătoare, pe când în mecanica statistică ele sunt "valori medii" calculate într-un "colectiv statistic" (sau "ansamblu statistic") asociat sistemului. Termodinamica se ocupă cu studiul fenomenologic, la scară
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
ale unui sistem sunt definite ca "valorile cele mai probabile" ale mărimilor microscopice corespunzătoare, pe când în mecanica statistică ele sunt "valori medii" calculate într-un "colectiv statistic" (sau "ansamblu statistic") asociat sistemului. Termodinamica se ocupă cu studiul fenomenologic, la scară macroscopică, al fenomenelor care decurg cu schimb de lucru mecanic, căldură si substanță. Baza teoretică a termodinamicii o constituie un număr redus de "principii", derivate prin generalizare și abstractizare din fapte experimentale. Din aceste principii rezultă existența unor "funcții de stare
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
Hermann von Helmholtz (1882-1883) a introdus metodele termodinamicii în "electrochimie". Impactul acestor idei și aplicațiile lor au acordat termodinamicii, alături de electromagnetism, o pozție de maximă relevanță în fizica secolului XIX. Mecanica statistică, numită uneori și "termodinamică statistică", studiază proprietățile sistemelor macroscopice la echilibru, utilizând metode statistice. Aceste metode sunt aplicate unui colectiv statistic (ansamblu statistic) constând dintr-un număr mare de stări microscopice ale sistemului studiat. Colectivul statistic este presupus reprezentativ pentru sistem, în sensul că el trebuie să conțină, cu
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
statistic) constând dintr-un număr mare de stări microscopice ale sistemului studiat. Colectivul statistic este presupus reprezentativ pentru sistem, în sensul că el trebuie să conțină, cu ponderi corecte, toate stările stările dinamice microscopice compatibile cu starea macrocopică dată. Proprietățile macroscopice pe care le utilizează termodinamica sunt calculate ca valori medii ale mărimilor microscopice corespunzătoare, pe acest colectiv statistic. Bazele mecanicii statistice clasice au fost puse de Gibbs (1884). Ulterior, dinamica clasică a componentelor microscopice ale sistemului a fost completată cu
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
dinamica clasică a componentelor microscopice ale sistemului a fost completată cu cea dată de mecanica cuantică, inclusiv calcularea ponderilor asociate stărilor microscopice: conform statisticilor Bose-Einstein pentru bosoni sau Fermi-Dirac pentru fermioni. Teoria cinetcă utilizează metode statistice pentru a determina proprietățile macroscopice ale unui sistem, pornind de la dinamica microscopică (forțele care acționează la scară moleculară și atomică). Spre deosebire de mecanica statistică, nu se limitează la studiul stărilor de echilibru termodinamic. James Clerk Maxwell și Ludwig Eduard Boltzmann au creat teoria cinetică a gazelor
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
la studiul stărilor de echilibru termodinamic. James Clerk Maxwell și Ludwig Eduard Boltzmann au creat teoria cinetică a gazelor (1860-1868), după ce Clausius introdusese deja noțiunea de "drum liber mijlociu"(1858). În deceniile următoare Boltzmann a cercetat aspectele "ireversibilității" la scară macroscopică, printre altele formulând "teorema H" referitoare la evoluția unui sistem către starea de echilibru. Teoria cinetică modernă a dezvoltat o varietate de metode matematice și de calcul numeric, pentru studiul fenomenelor de transport în lichide și solide.
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
Mecanica statistică, numită uneori și "termodinamică statistică", utilizează metode statistice pentru a deduce proprietățile și comportarea sistemelor fizice macroscopice, la echilibru termodinamic, pe baza structurii lor microscopice. Metodele statistice au fost introduse în acest context de Maxwell într-o serie de trei articole (1860-1879) și de Boltzmann într-o serie de patru articole (1870-1884), care au pus bazele teoriei
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
înrudite prin obiectul de studiu, dar care diferă prin metodele utilizate; adeseori, ele sunt prezentate împreună, sub denumirea de fizică statistică. Principiile termodinamicii, rezultate din generalizarea și abstractizarea unor date empirice, exprimă proprietățile aproximative și comportarea probabilă a unor sisteme macroscopice, alcătuite dintr-un număr foarte mare de componente microscopice: molecule și atomi. Legile mecanicii permit în principiu determinarea completă a stării unui sistem alcătuit din mai multe componente, la orice moment, dacă sunt cunoscute interacțiunile (forțele), precum și starea sistemului (coordonatele
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
și impulsurile componentelor) la un moment anterior. În practică însă, condițiile inițiale nu sunt cunoscute, iar integrarea ecuațiilor de mișcare, pentru un număr foarte mare de componente, se lovește de dificultăți de calcul. Tipic, numărul de molecule dintr-o masă macroscopică de gaz, în condiții standard, este de ordinul de mărime al numărului lui Avogadro, adică 10, ceea ce face ca determinarea stării sale mecanice (microscopice) să fie imposibilă. Pe de altă parte, experiența arată că proprietățile termodinamice (macroscopice) ale aceleiași mase
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
dintr-o masă macroscopică de gaz, în condiții standard, este de ordinul de mărime al numărului lui Avogadro, adică 10, ceea ce face ca determinarea stării sale mecanice (microscopice) să fie imposibilă. Pe de altă parte, experiența arată că proprietățile termodinamice (macroscopice) ale aceleiași mase de gaz sunt complet determinate de doar doi parametri (de exemplu, este suficientă cunoașterea energiei libere ca funcție de volum și temperatură), iar unul dintre aceștia (în acest caz temperatura) nu este de natură mecanică. Legătura dintre aceste
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
ca funcție de volum și temperatură), iar unul dintre aceștia (în acest caz temperatura) nu este de natură mecanică. Legătura dintre aceste două puncte de vedere aparent contradictorii o realizează metodele statistice. În mecanica statistică, obiectul de studiu este un sistem (macroscopic) compus dintr-un număr (mare) de subsisteme (microscopice) care interacționează (între ele și cu lumea exterioară) după legi cunoscute. Forțele, atât cele "interioare" cât și cele "exterioare", sunt presupuse "conservative", adică energia mecanică totală a sistemului (suma dintre energia cinetică
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
sistemului (suma dintre energia cinetică și energia potențială) rămâne constantă în timpul mișcării. Această ipoteză ilustrează punctul de vedere conform căruia forțele neconservative, care produc disiparea energiei sub formă de căldură (cum sunt forțele de frecare), se manifestă doar la scară macroscopică și sunt consecința interacțiunilor la scară microscopică. Este convenabilă scrierea ecuațiilor de mișcare sub "forma canonică" utilizată în mecanica hamiltoniană. Starea unui sistem cu formula 1 grade de libertate microscopice este caracterizată, la orice moment, prin valorile pe care le iau
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
stări mecanice ale sistemului la un moment inițial formula 21; se urmărește evoluția acestor stări, conform ecuațiilor canonice; fie formula 22 pozițiile punctelor considerate la un moment ulterior formula 23; atunci volumul domeniului formula 24 este egal cu volumul domeniului formula 19. Starea unui sistem macroscopic în echilibru termodinamic este caracterizată printr-un număr restrâns de parametri, pe când la scară microscopică există un număr enorm de stări mecanice distincte compatibile cu una și aceeași stare termodinamică. Gibbs a făcut sugestia că proprietățile termodinamice ale sistemului pot
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
sugestia că proprietățile termodinamice ale sistemului pot fi calculate, prin metode statistice, pornind de la această mulțime de stări microscopice. Totalitatea stărilor mecanice compatibile cu o stare termodinamică dată alcătuiește un "colectiv statistic", sau "ansamblu statistic". Întrucât într-o anumită determinare macroscopică doar una dintre aceste stări este efectiv realizată (celelalte reprezentând stări posibile care la rândul lor pot fi efectiv realizate dacă sistemul este readus în starea termodinamică inițială după transformări arbitrare), vorbim despre un colectiv statistic "virtual". Un colectiv statistic
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
oricare traiectorie în spațiul fazelor se apropie oricât de mult de oricare punct al suprafeței de energie constantă pe care se află în întregime această traiectorie. Mecanica statistică reprezintă un punct de vedere diferit, față de termodinamică, asupra valorilor mărimilor mecanice macroscopice la echilibru. În termodinamică, valoarea oricărei mărimi mecanice este univoc determinată dacă sunt cunoscute valorile unui număr restrâns de parametri de stare independenți de timp: echilibrul termodinamic este "static". În mecanica statistică, starea sistemului este descrisă de un colectiv statistic
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
unei variabile aleatorii se îndepărtează de la valoarea medie și între ele este dată de rădăcina pătrată din valoarea medie a pătratului abaterii de la valoarea medie, numită "abatere pătratică medie", sau "împrăștiere statistică": Determinări experimentale precise au arătat că mărimile mecanice macroscopice din termodinamică pot fi identificate cu valorile medii calculate de mecanica statistică. Ele au detectat și existența unor "fluctuații" ale acestor mărimi, de ordinul de mărime al abaterilor pătratice medii prezise de mecanica statistică. Descrierea comportării termodinamice a unui sistem
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
în parte. Distribuția "macrocanonică" are forma unde este "funcția de partiție macrocanonică". Semnificația parametrilor formula 66 și formula 67 urmează să rezulte din interpretarea termodinamică a distribuțiilor canonică și macrocanonică. Dinamica microscopică a unui sistem este determinată, pe lângă forțele interne, de forțe macroscopice externe, care până acum nu au fost considerate explicit. Fie formula 68 numărul de grade de libertate mecanice macroscopice și formula 69 variabilele de poziție respective. Atât hamiltoniana cât și volumul în spațiul fazelor conținut în interiorul unei suprafețe de energie constantă depind
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
să rezulte din interpretarea termodinamică a distribuțiilor canonică și macrocanonică. Dinamica microscopică a unui sistem este determinată, pe lângă forțele interne, de forțe macroscopice externe, care până acum nu au fost considerate explicit. Fie formula 68 numărul de grade de libertate mecanice macroscopice și formula 69 variabilele de poziție respective. Atât hamiltoniana cât și volumul în spațiul fazelor conținut în interiorul unei suprafețe de energie constantă depind de aceste variabile: Principiul întâi al termodinamicii definește o funcție de stare formula 72 numită "energie internă"; mecanica statistică interpretează
Mecanică statistică () [Corola-website/Science/319326_a_320655]