1,769 matches
-
Condensatorul electrolitic este un condensator care folosește un electrolit ca mediu dintre plăci, pentru a obține o capacitate electrică mai mare pe unitatea de volum. Este folosit în circuite de joasă frecvență ca, de exemplu, cele pentru netezirea (filtrarea) curentului pulsator
Condensator electrolitic () [Corola-website/Science/323164_a_324493]
-
Condensatorul electrolitic este un condensator care folosește un electrolit ca mediu dintre plăci, pentru a obține o capacitate electrică mai mare pe unitatea de volum. Este folosit în circuite de joasă frecvență ca, de exemplu, cele pentru netezirea (filtrarea) curentului pulsator produs de un redresor
Condensator electrolitic () [Corola-website/Science/323164_a_324493]
-
unitatea de volum. Este folosit în circuite de joasă frecvență ca, de exemplu, cele pentru netezirea (filtrarea) curentului pulsator produs de un redresor. După felul metalului din care este construit anodul se deosebesc: - Aluminiu-condensatori - Tantal-condensatori - Niob-condensatori Raportat la volumul construcției condensatorii electolitici au o capacitate mai mare decât cei ceramici sau in folie plastică. Condensatorii electrolitici sunt componente de circuit electric polarizate, au un pol plus și un pol minus.
Condensator electrolitic () [Corola-website/Science/323164_a_324493]
-
pentru netezirea (filtrarea) curentului pulsator produs de un redresor. După felul metalului din care este construit anodul se deosebesc: - Aluminiu-condensatori - Tantal-condensatori - Niob-condensatori Raportat la volumul construcției condensatorii electolitici au o capacitate mai mare decât cei ceramici sau in folie plastică. Condensatorii electrolitici sunt componente de circuit electric polarizate, au un pol plus și un pol minus.
Condensator electrolitic () [Corola-website/Science/323164_a_324493]
-
conform STAS 2644-73, însă în 2009 acest standard a fost anulat, fără a fi înlocuit de un altul. Majoritatea schimbătoarelor lucrează fără schimbarea stării de agregare a mediilor, iar transferul termic are loc între fluide: lichid-lichid (răcitoare, încălzitoare, preîncălzitoare), lichid-vapori (condensatoare), lichid-gaz (radiatoare, boilere, butelii de încălzire, în instalații frigorifice), vapori-lichid (vaporizatoare, preîncălzitoare, fierbătoare), vapori-gaz și gaz-gaz. Există însă și schimbătoare la care unul dintre medii este solid, de exemplu cele care mențin apa înghețată într-un patinoar. Aceste schimbătoare sunt
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
lichid. Uleiul asigură astfel o răcire corespunzătoare a rezistenței electrice, el însuși cedând căldura spațiului încălzit prin suprafața radiatorului, prin convecție liberă, exact ca în cazul caloriferelor. Prin aceasta se asigură un confort sporit, similar cu cel oferit de calorifere. Condensatoarele folosite în industria alimentară și cea chimică sunt formate de obicei din serpentine prin care circulă vaporii care trebuie condensați, scufundate într-un vas cu apă de răcire, sau, de exemplu la mașinile frigorifice, din serpentine cu suprafețe extinse în
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
din serpentine prin care circulă vaporii care trebuie condensați, scufundate într-un vas cu apă de răcire, sau, de exemplu la mașinile frigorifice, din serpentine cu suprafețe extinse în exteriorul cărora circulă aerul de răcire. Unele dintre cele mai mari condensatoare sunt folosite în termocentrale, la condensarea aburului evacuat de turbinele de abur, în vederea realizării unei presiuni cât mai scăzute la ieșirea din turbină. Condensatoarele de suprafață permit realizarea unor presiuni foarte mici (un vid foarte înaintat), iar condensatul obținut este
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
serpentine cu suprafețe extinse în exteriorul cărora circulă aerul de răcire. Unele dintre cele mai mari condensatoare sunt folosite în termocentrale, la condensarea aburului evacuat de turbinele de abur, în vederea realizării unei presiuni cât mai scăzute la ieșirea din turbină. Condensatoarele de suprafață permit realizarea unor presiuni foarte mici (un vid foarte înaintat), iar condensatul obținut este foarte pur, fără aer. Ele sunt formate dintr-o manta și un fascicul tubular format din țevi cu diametrul de 17-24 mm și grosimea
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
Pentru a evita scurgerea condensatului în jos din țeavă în țeavă, ceea ce ar mări grosimea peliculei de apă pe țeavă și ar înrăutăți schimbul de căldură, între țevi sunt plasați din loc în loc pereți despărțitori care dirijează scurgerea condensatului. Țevile condensatoarelor sunt supuse fenomenelor de coroziune și de colmatare. La condensatoarele cu țevi de titan, atât depunerile pe pereții interiori ai țevilor, cât și coroziunea cauzată de microorganismele din apă este mult mai mică, iar curățirea interioară a țevilor se poate
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
țeavă, ceea ce ar mări grosimea peliculei de apă pe țeavă și ar înrăutăți schimbul de căldură, între țevi sunt plasați din loc în loc pereți despărțitori care dirijează scurgerea condensatului. Țevile condensatoarelor sunt supuse fenomenelor de coroziune și de colmatare. La condensatoarele cu țevi de titan, atât depunerile pe pereții interiori ai țevilor, cât și coroziunea cauzată de microorganismele din apă este mult mai mică, iar curățirea interioară a țevilor se poate face mult mai ușor. Curățirea se poate face cu perii
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
global de transfer termic se poate obține prin mărirea ("extinderea") suprafeței de contact cu fluidul care are coeficientul de convecție mai mic. Suprafețele extinse sunt recomandate pentru răcitoarele de ulei (pe partea uleiului), radiatoare pentru autovehicule, alte tipuri de răcitoare, condensatoare pentru instalații de climatizare (la toate pe partea aerului). Părțile care extind suprafețele, numite curent "nervuri", se obțin prin extrudare, sau se lipesc pe suprafața de bază prin brazare în cuptoare cu vid. În aceleași cuptoare se execută și tratamentele
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
fluidelor este acceptabil, de exemplu amestecul gazelor de ardere cu aerul. Acest tip de schimbătoare de căldură se folosesc la climatizări (umidificare), la condensarea vaporilor și la răcirea apei. Transferul termic poate avea loc între lichid-lichid (amestecătoare), vapori-lichid (degazoare, acumulatoare, condensatoare), lichid-gaz (scrubere, turnuri de răcire), gaz-gaz (amestecătoare). Condensatoarele prin amestec pentru turbine realizează condensarea aburului prin amestecarea lui cu apă de răcire, introdusă sub forma unor dușuri. Aceste condensatoare au o construcție simplă și ieftină, dar realizează un vid scăzut
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
ardere cu aerul. Acest tip de schimbătoare de căldură se folosesc la climatizări (umidificare), la condensarea vaporilor și la răcirea apei. Transferul termic poate avea loc între lichid-lichid (amestecătoare), vapori-lichid (degazoare, acumulatoare, condensatoare), lichid-gaz (scrubere, turnuri de răcire), gaz-gaz (amestecătoare). Condensatoarele prin amestec pentru turbine realizează condensarea aburului prin amestecarea lui cu apă de răcire, introdusă sub forma unor dușuri. Aceste condensatoare au o construcție simplă și ieftină, dar realizează un vid scăzut din cauza infiltrațiilor mari de aer. Conform legii lui
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
Transferul termic poate avea loc între lichid-lichid (amestecătoare), vapori-lichid (degazoare, acumulatoare, condensatoare), lichid-gaz (scrubere, turnuri de răcire), gaz-gaz (amestecătoare). Condensatoarele prin amestec pentru turbine realizează condensarea aburului prin amestecarea lui cu apă de răcire, introdusă sub forma unor dușuri. Aceste condensatoare au o construcție simplă și ieftină, dar realizează un vid scăzut din cauza infiltrațiilor mari de aer. Conform legii lui Dalton, presiunea din condensator este suma presiunilor parțiale ale aburului și a aerului infiltrat. Aerul se poate infiltra în condensator prin
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
turbine realizează condensarea aburului prin amestecarea lui cu apă de răcire, introdusă sub forma unor dușuri. Aceste condensatoare au o construcție simplă și ieftină, dar realizează un vid scăzut din cauza infiltrațiilor mari de aer. Conform legii lui Dalton, presiunea din condensator este suma presiunilor parțiale ale aburului și a aerului infiltrat. Aerul se poate infiltra în condensator prin neetanșeități sau poate fi adus dizolvat în apa de răcire. Acest tip de condensator s-a folosit la primele mașini cu abur, însă
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
Aceste condensatoare au o construcție simplă și ieftină, dar realizează un vid scăzut din cauza infiltrațiilor mari de aer. Conform legii lui Dalton, presiunea din condensator este suma presiunilor parțiale ale aburului și a aerului infiltrat. Aerul se poate infiltra în condensator prin neetanșeități sau poate fi adus dizolvat în apa de răcire. Acest tip de condensator s-a folosit la primele mașini cu abur, însă, din cauza acestui dezavantaj, a fost înlocuit cu condensatoare de suprafață. Pentru a elimina acest dezavantaj, în
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
mari de aer. Conform legii lui Dalton, presiunea din condensator este suma presiunilor parțiale ale aburului și a aerului infiltrat. Aerul se poate infiltra în condensator prin neetanșeități sau poate fi adus dizolvat în apa de răcire. Acest tip de condensator s-a folosit la primele mașini cu abur, însă, din cauza acestui dezavantaj, a fost înlocuit cu condensatoare de suprafață. Pentru a elimina acest dezavantaj, în sistemul Heller-Forgó drept apă de răcire se folosește condensatul însuși, răcit într-un turn de
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
a aerului infiltrat. Aerul se poate infiltra în condensator prin neetanșeități sau poate fi adus dizolvat în apa de răcire. Acest tip de condensator s-a folosit la primele mașini cu abur, însă, din cauza acestui dezavantaj, a fost înlocuit cu condensatoare de suprafață. Pentru a elimina acest dezavantaj, în sistemul Heller-Forgó drept apă de răcire se folosește condensatul însuși, răcit într-un turn de răcire uscat. Sistemul, care nu necesită apă de răcire, deci este adecvat pentru regiunile aride, necesită însă
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
într-un turn de răcire uscat. Sistemul, care nu necesită apă de răcire, deci este adecvat pentru regiunile aride, necesită însă un turn de răcire cu o suprafață de răcire foarte mare. În termocentrale sau centralele nucleare, căldura evacuată în condensator conform ciclului Clausius-Rankine după care funcționează este preluată de apa de răcire a condensatorului. Această apă trebuie apoi să fie răcită la rândul ei, în turnuri de răcire. Acestea pot fi fie "uscate", caz în care sunt de fapt niște
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
este adecvat pentru regiunile aride, necesită însă un turn de răcire cu o suprafață de răcire foarte mare. În termocentrale sau centralele nucleare, căldura evacuată în condensator conform ciclului Clausius-Rankine după care funcționează este preluată de apa de răcire a condensatorului. Această apă trebuie apoi să fie răcită la rândul ei, în turnuri de răcire. Acestea pot fi fie "uscate", caz în care sunt de fapt niște schimbătoare de căldură foarte mari fără schimbare de fază, fie "umede", caz în care
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
căldură latentă de vaporizare a unei părți din apă, prin transfer de căldură și de masă. De regulă se folosesc turnuri umede, cele uscate fiind folosite doar în zonele cu deficit de apă. La turnurile umede apa care vine de la condensator este lăsată să cadă sub formă de picături deasupra umpluturii, formată din plase rezistente la coroziune, care o pulverizează, facilitând evaporarea. Curgerea aerului care preia vaporii formați poate fi în contracurent, sau în curent încrucișat, realizată prin tiraj natural sau
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
electric, fără a fi necesar niciun alt metal sau conductor de pământ. Tesla a denumit acest fenomen "transmisia de energie electrică prin intermediul unui singur cablu fără întoarcere". A conceput și proiectat circuitele electrice rezonante formate dintr-o bobina și un condensator, esențiale pentru emisia și recepția de unde radioelectrice, grație fenomenului de rezonantă. Ceea ce de fapt crea și transmitea erau unde electromagnetice, plecând de la alternatoare de înalță frecventă, doar că nu le-a aplicat la transmisia de semnale radio cum a făcut
Nikola Tesla () [Corola-website/Science/302222_a_303551]
-
producând curent electric trifazat de 10 500 V cu o frecvență de 50 Hz, care, după ce trecea prin stația de transformare a centralei, era distribuită către consumatori. Aburul la rândul său, dupa ce realiza lucrul în turbină, era dirijat spre condensator unde era transformat din nou în apă pentru a fi reutilizat din nou în cazane. Aburul fierbinte redevenea în stare lichidă prin contactul cu pereții reci ai tuburilor din interiorul condensatorului, prin care trecea apa rece din râu. Prin urmare
Centrala Tejo () [Corola-website/Science/320909_a_322238]
-
dupa ce realiza lucrul în turbină, era dirijat spre condensator unde era transformat din nou în apă pentru a fi reutilizat din nou în cazane. Aburul fierbinte redevenea în stare lichidă prin contactul cu pereții reci ai tuburilor din interiorul condensatorului, prin care trecea apa rece din râu. Prin urmare, apa râului niciodată nu intra în contact direct cu apa pură folosită ca fluid de lucru. Din condensator, apa era pompată înapoi în cazane și sub această formă închidea ciclul. Funcționarea
Centrala Tejo () [Corola-website/Science/320909_a_322238]
-
redevenea în stare lichidă prin contactul cu pereții reci ai tuburilor din interiorul condensatorului, prin care trecea apa rece din râu. Prin urmare, apa râului niciodată nu intra în contact direct cu apa pură folosită ca fluid de lucru. Din condensator, apa era pompată înapoi în cazane și sub această formă închidea ciclul. Funcționarea centralei era imposibilă fără persoanele care,timp de generații, au lucrat acolo. Era necesară o repartiție strictă a muncii, precum și un sistem de lucru în schimburi, pentru
Centrala Tejo () [Corola-website/Science/320909_a_322238]