13,759 matches
-
și negative. O definiție mai riguroasă impune respectarea anumitor criterii. Acestea se stabilesc în funcție de lungimea de ecranare Debye ce reprezintă distanța pe care sunt ecranate câmpurile electrice externe. În primul rând, sistemul trebuie să conțină "un număr foarte mare de particule ce interacționează colectiv", adică o particulă influențează vecini situați la distanțe mari, nu doar pe cei apropiați. Acest criteriu este îndeplinit atunci când numărul de electroni cuprinși în sfera de influență a unei particule este mare. Interacțiunile puternice determină un răspuns
Plasmă () [Corola-website/Science/309563_a_310892]
-
impune respectarea anumitor criterii. Acestea se stabilesc în funcție de lungimea de ecranare Debye ce reprezintă distanța pe care sunt ecranate câmpurile electrice externe. În primul rând, sistemul trebuie să conțină "un număr foarte mare de particule ce interacționează colectiv", adică o particulă influențează vecini situați la distanțe mari, nu doar pe cei apropiați. Acest criteriu este îndeplinit atunci când numărul de electroni cuprinși în sfera de influență a unei particule este mare. Interacțiunile puternice determină un răspuns colectiv la acțiunea câmpurilor electrice și
Plasmă () [Corola-website/Science/309563_a_310892]
-
să conțină "un număr foarte mare de particule ce interacționează colectiv", adică o particulă influențează vecini situați la distanțe mari, nu doar pe cei apropiați. Acest criteriu este îndeplinit atunci când numărul de electroni cuprinși în sfera de influență a unei particule este mare. Interacțiunile puternice determină un răspuns colectiv la acțiunea câmpurilor electrice și magnetice. Raza sferei de influență se consideră egală cu lungimea Debye. De asemenea, dimensiunile coloanei de plasmă trebuie să fie mult mai mari decât lungimea Debye. Aceasta
Plasmă () [Corola-website/Science/309563_a_310892]
-
ecranate, plasma rămânând cvasineutră aproape în întreg volumul său. Interacțiunile din interiorul plasmei sunt mult mai importante decât cele de la suprafață, unde apar efecte de margine. Pe scurt, plasma este un sistem fizic format dintr-un număr foarte mare de particule neutre (atomi în stare fundamentală sau în stări excitate, fotoni) și particule încărcate electric (ioni pozitivi și negativi, electroni) ale căror proprietăți sunt determinate de interacțiunile colective și care, macroscopic, apare neutră din punct de vedere electric. În general, plasmele
Plasmă () [Corola-website/Science/309563_a_310892]
-
plasmei sunt mult mai importante decât cele de la suprafață, unde apar efecte de margine. Pe scurt, plasma este un sistem fizic format dintr-un număr foarte mare de particule neutre (atomi în stare fundamentală sau în stări excitate, fotoni) și particule încărcate electric (ioni pozitivi și negativi, electroni) ale căror proprietăți sunt determinate de interacțiunile colective și care, macroscopic, apare neutră din punct de vedere electric. În general, plasmele conțin numeroase tipuri de particule, electroni, ioni pozitivi și negativi de sarcină
Plasmă () [Corola-website/Science/309563_a_310892]
-
fundamentală sau în stări excitate, fotoni) și particule încărcate electric (ioni pozitivi și negativi, electroni) ale căror proprietăți sunt determinate de interacțiunile colective și care, macroscopic, apare neutră din punct de vedere electric. În general, plasmele conțin numeroase tipuri de particule, electroni, ioni pozitivi și negativi de sarcină diferită, diverși atomi. Pentru fiecare dintre acestea se poate defini concentrația, egală cu numărul de particule în unitatea de volum.Într-un model simplificat, se consideră că plasma este alcătuită din atomi de
Plasmă () [Corola-website/Science/309563_a_310892]
-
și care, macroscopic, apare neutră din punct de vedere electric. În general, plasmele conțin numeroase tipuri de particule, electroni, ioni pozitivi și negativi de sarcină diferită, diverși atomi. Pentru fiecare dintre acestea se poate defini concentrația, egală cu numărul de particule în unitatea de volum.Într-un model simplificat, se consideră că plasma este alcătuită din atomi de un singur fel, ioni proveniți din ionizarea acestora, având o singură sarcină elementară pozitivă, și electroni. Întrucât plasma este neutră, densitatea ionilor, formula 1
Plasmă () [Corola-website/Science/309563_a_310892]
-
proveniți din ionizarea acestora, având o singură sarcină elementară pozitivă, și electroni. Întrucât plasma este neutră, densitatea ionilor, formula 1, va fi egală cu cea a electronilor, formula 2. Concentrația plasmei, notată cu formula 3, se definește ca fiind egală cu numărul de particule încărcate, electroni sau ioni, din unitatea de volum. Există o strânsă corelație între concentrație și cvasineutralitatea plasmei. Câmpul electric este determinat de concentrația sarcinilor electrice și de modul în care acestea sunt distribuite. Într-o plasmă omogenă, câmpul este constant
Plasmă () [Corola-website/Science/309563_a_310892]
-
de ionizare plasmele se împart în plasme slab ionizate formula 9, mediu ionizate formula 10, puternic ionizate formula 11 și total ionizate formula 12. Deoarece plasmele au temperaturi foarte ridicate, acestea se exprimă, de obicei, în electronvolți (eV), reprezentând energia de agitație termică a particulelor. Legătura între electronvolt și kelvin, unitatea fundamentală în SI pentru temperatură, este dată de relația Astfel, o temperatură de 1 eV reprezintă, aproximativ, 11000 K. Plasmele de laborator, în general, nu ajung la echilibru termodinamic complet sau total (ETT), atunci când
Plasmă () [Corola-website/Science/309563_a_310892]
-
laborator, în general, nu ajung la echilibru termodinamic complet sau total (ETT), atunci când toate temperaturile din plasmă sunt egale între ele. Plasmele total ionizate pot reprezenta o bună aproximație a stării ETT. În acest caz toate temperaturile diferitelor specii de particule sunt egale și, mai mult, absorbția și emisia de radiație se face cu aceeași rată, plasma fiind în echilibru cu exteriorul. Spectrul radiației emise este cel al corpului absolut negru. De cele mai multe ori, această condiție nu poate fi îndeplinită, pereții
Plasmă () [Corola-website/Science/309563_a_310892]
-
avea temperaturi mult mai mari decât ionii. Acest lucru se datorează faptului că electronii au masă mult mai mică și pot fi accelerați mai repede în câmpul electromagnetic. Timpul de viață al acestora este prea mic pentru a transfera energie particulelor mai grele, electronii dispărând în urma recombinărilor în volum și la suprafața plasmei. Prin urmare, temperaturile ionilor și neutrilor sunt, aproximativ, egale cu cea a mediului înconjurător, mult diferite de cea a electronilor. Acest fenomen este întâlnit în cazul plasmelor slab
Plasmă () [Corola-website/Science/309563_a_310892]
-
stratului de sarcină spațială. Astfel, în interiorul plasmei, câmpul electric extern nu se manifestă, păstrându-se condiția de cvasineutralitate. Agitația termică determină grosimea stratului. În lipsa acesteia, ecranarea s-ar face pe o distanță foarte mică, neglijabilă. În schimb, datorită energiei termice particulele încărcate pot scăpa din groapa de potențial generată de electrod. Pentru o plasmă simplă, lungimea Debye poate fi aproximată după relația: unde Lungimea Debye exprimă dimensiunile pe care le are un volum minim de plasmă ce încă păstrează cvasineutralitatea. Numărul
Plasmă () [Corola-website/Science/309563_a_310892]
-
pot scăpa din groapa de potențial generată de electrod. Pentru o plasmă simplă, lungimea Debye poate fi aproximată după relația: unde Lungimea Debye exprimă dimensiunile pe care le are un volum minim de plasmă ce încă păstrează cvasineutralitatea. Numărul de particule, formula 24, conținute în acest volum trebuie să fie suficient de mare pentru a păstra caracterul statistic al fenomenelor. Se poate defini "parametrul plasmei", egal cu inversul numărului de particule cuprinse într-un volum Debye, formula 25, Astfel, lungimea Debye constituie un
Plasmă () [Corola-website/Science/309563_a_310892]
-
un volum minim de plasmă ce încă păstrează cvasineutralitatea. Numărul de particule, formula 24, conținute în acest volum trebuie să fie suficient de mare pentru a păstra caracterul statistic al fenomenelor. Se poate defini "parametrul plasmei", egal cu inversul numărului de particule cuprinse într-un volum Debye, formula 25, Astfel, lungimea Debye constituie un criteriu în stabilirea cvasineutralității și a caracterului colectiv al interacțiunilor. Dimensiunile liniare ale plasmei trebuie să fie mai mari decât lungimea Debye, respectiv, numărul de particule dintr-un volum
Plasmă () [Corola-website/Science/309563_a_310892]
-
inversul numărului de particule cuprinse într-un volum Debye, formula 25, Astfel, lungimea Debye constituie un criteriu în stabilirea cvasineutralității și a caracterului colectiv al interacțiunilor. Dimensiunile liniare ale plasmei trebuie să fie mai mari decât lungimea Debye, respectiv, numărul de particule dintr-un volum Debye trebuie să fie mult mai mare decât 1. Modelul uniparticulă ia în considerare mișcarea unei particule reprezentative din plasmă. Se neglijează efectele relativiste, cele cuantice și, cu unele excepții, gravitația. Poate fi folosit pentru a descrie
Plasmă () [Corola-website/Science/309563_a_310892]
-
a caracterului colectiv al interacțiunilor. Dimensiunile liniare ale plasmei trebuie să fie mai mari decât lungimea Debye, respectiv, numărul de particule dintr-un volum Debye trebuie să fie mult mai mare decât 1. Modelul uniparticulă ia în considerare mișcarea unei particule reprezentative din plasmă. Se neglijează efectele relativiste, cele cuantice și, cu unele excepții, gravitația. Poate fi folosit pentru a descrie plasmele cu densități mici, necolizionale. Concentrațiile fiind mici, se pot neglija interacțiunile dintre particule. Mișcarea particulelor încărcate se studiază pe
Plasmă () [Corola-website/Science/309563_a_310892]
-
uniparticulă ia în considerare mișcarea unei particule reprezentative din plasmă. Se neglijează efectele relativiste, cele cuantice și, cu unele excepții, gravitația. Poate fi folosit pentru a descrie plasmele cu densități mici, necolizionale. Concentrațiile fiind mici, se pot neglija interacțiunile dintre particule. Mișcarea particulelor încărcate se studiază pe baza ecuației diferențiale a mișcării unde formula 28, formula 29, și formula 30 reprezintă masa, viteza, respectiv, sarcina particulei, iar formula 31 și formula 32, intensitatea câmpului electric și inducția câmpului magnetic. Modelul nu poate da informații despre particulele
Plasmă () [Corola-website/Science/309563_a_310892]
-
în considerare mișcarea unei particule reprezentative din plasmă. Se neglijează efectele relativiste, cele cuantice și, cu unele excepții, gravitația. Poate fi folosit pentru a descrie plasmele cu densități mici, necolizionale. Concentrațiile fiind mici, se pot neglija interacțiunile dintre particule. Mișcarea particulelor încărcate se studiază pe baza ecuației diferențiale a mișcării unde formula 28, formula 29, și formula 30 reprezintă masa, viteza, respectiv, sarcina particulei, iar formula 31 și formula 32, intensitatea câmpului electric și inducția câmpului magnetic. Modelul nu poate da informații despre particulele neutre. Modelul
Plasmă () [Corola-website/Science/309563_a_310892]
-
fi folosit pentru a descrie plasmele cu densități mici, necolizionale. Concentrațiile fiind mici, se pot neglija interacțiunile dintre particule. Mișcarea particulelor încărcate se studiază pe baza ecuației diferențiale a mișcării unde formula 28, formula 29, și formula 30 reprezintă masa, viteza, respectiv, sarcina particulei, iar formula 31 și formula 32, intensitatea câmpului electric și inducția câmpului magnetic. Modelul nu poate da informații despre particulele neutre. Modelul macroscopic prezintă plasma ca un fluid. Modelul este preluat din mecanica fluidelor la care se adaugă interacțiunea cu câmpurile electromagnetice
Plasmă () [Corola-website/Science/309563_a_310892]
-
particule. Mișcarea particulelor încărcate se studiază pe baza ecuației diferențiale a mișcării unde formula 28, formula 29, și formula 30 reprezintă masa, viteza, respectiv, sarcina particulei, iar formula 31 și formula 32, intensitatea câmpului electric și inducția câmpului magnetic. Modelul nu poate da informații despre particulele neutre. Modelul macroscopic prezintă plasma ca un fluid. Modelul este preluat din mecanica fluidelor la care se adaugă interacțiunea cu câmpurile electromagnetice. Particula elementară de fluid trebuie să fie suficient de mică pentru ca parametrii plasmei să nu varieze considerabil în interiorul
Plasmă () [Corola-website/Science/309563_a_310892]
-
iar formula 31 și formula 32, intensitatea câmpului electric și inducția câmpului magnetic. Modelul nu poate da informații despre particulele neutre. Modelul macroscopic prezintă plasma ca un fluid. Modelul este preluat din mecanica fluidelor la care se adaugă interacțiunea cu câmpurile electromagnetice. Particula elementară de fluid trebuie să fie suficient de mică pentru ca parametrii plasmei să nu varieze considerabil în interiorul său, dar suficient de mare pentru ca numărul de ioni, electroni și neutri din interiorul său să se mențină constant în timp. Distribuțiile vitezelor
Plasmă () [Corola-website/Science/309563_a_310892]
-
să nu varieze considerabil în interiorul său, dar suficient de mare pentru ca numărul de ioni, electroni și neutri din interiorul său să se mențină constant în timp. Distribuțiile vitezelor sunt de tip maxwellian, dacă timpul mediu dintre două ciocniri consecutive ale particulelor este mai mare decât timpul în care variază considerabil parametrii plasmei. În acest fel se asigură atingerea unei stări de ehilibru, caracterizată de distribuția Maxwell a vitezelor. Modelul poate fi aplicat și plasmelor necolizionale. Plasma poate fi considerată ca fiind
Plasmă () [Corola-website/Science/309563_a_310892]
-
fiind alcătuită din mai multe fluide. Spre exemplu, o plasmă simplă conține un fluid electronic și unul ionic care interacționează prin intermediul câmpurilor electric și magnetic și a ciocnirilor. Interacțiunea cu fluidul atomilor neutri se face exclusiv pe baz ciocnirilor între particulele de fluid. Modelul unifluid (sau magnetohidrodinamic) este folosit pentru studiul fenomenelor lent variabile în timp. Plasma va fi descrisă de parametri ce însumează mărimile fizice asociate fluidelor electronic și ionic. Modelul cinetic se aplică în cazul în care vitezele particulelor
Plasmă () [Corola-website/Science/309563_a_310892]
-
particulele de fluid. Modelul unifluid (sau magnetohidrodinamic) este folosit pentru studiul fenomenelor lent variabile în timp. Plasma va fi descrisă de parametri ce însumează mărimile fizice asociate fluidelor electronic și ionic. Modelul cinetic se aplică în cazul în care vitezele particulelor nu pot fi descrise de o funcție de distribuție maxwelliană. Calculul distribuțiilor se face cu ajutorul ecuației Maxwell-Boltzmann. Reprezentarea funcției formula 33 se face în spațiul fazelor, un spațiu cu șase dimensiuni, având drept coordonate componentele vectorilor de poziție formula 34 și a vitezelor
Plasmă () [Corola-website/Science/309563_a_310892]
-
electrice și deplasări ale sarcinilor datorită câmpului magnetic terestru. Plasma rezultată se extinde în spațiu, în zona inferioară a magnetosferei, alcătuind plasmasfera. Un fenomen spectaculos ce are loc în ionosferă îl reprezintă aurorele polare. Acestea se formează în urma interacțiunii dintre particulele cuprinse în magnetosferă și cele din ionosferă. Particulele încărcate provenite din vântul solar sunt captate de câmpul magnetic al Pământului și dirijate spre poli, de-a lungul liniilor de câmp. Aici concentrația lor devine suficient de mare pentru a putea
Plasmă () [Corola-website/Science/309563_a_310892]