13,759 matches
-
o linie, uneori modelul atomic al lui Bohr este uneori descris ca fiind unu-dimensional. Niels Bohr a determinat că este imposibil de descris în mod corect lumina folosind doar analogia cu o undă sau folosind doar analogia cu o particulă. De aceea a enunțat principiul complementarității, care este o teoerie a perechilor, precum perechea particulă-undă sau perechea poziție-moment. Louis de Broglie a elaborat consecința matematică a acestor descoperiri. În mecanica cuantică, s-a descoperit că ceea ce denumim unde electromagnetice pot
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
teoerie a perechilor, precum perechea particulă-undă sau perechea poziție-moment. Louis de Broglie a elaborat consecința matematică a acestor descoperiri. În mecanica cuantică, s-a descoperit că ceea ce denumim unde electromagnetice pot reacționa în anumite experimente ca și cum ar fi compuse din particule iar în altele ca și cum ele ar fi doar unde. S-a descoperit de asemenea că particulele subatomice pot uneori fi descrise ca particule iar alteori ca undă. Aceste descoperiri au condus la elaborarea teoriei dualității undă-particulă de către Louis-Victor de Broglie
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
a acestor descoperiri. În mecanica cuantică, s-a descoperit că ceea ce denumim unde electromagnetice pot reacționa în anumite experimente ca și cum ar fi compuse din particule iar în altele ca și cum ele ar fi doar unde. S-a descoperit de asemenea că particulele subatomice pot uneori fi descrise ca particule iar alteori ca undă. Aceste descoperiri au condus la elaborarea teoriei dualității undă-particulă de către Louis-Victor de Broglie în 1924, care stabilește că la nivel subatomic entitățile prezintă simultan atât proprietăți de particulă cât
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
a descoperit că ceea ce denumim unde electromagnetice pot reacționa în anumite experimente ca și cum ar fi compuse din particule iar în altele ca și cum ele ar fi doar unde. S-a descoperit de asemenea că particulele subatomice pot uneori fi descrise ca particule iar alteori ca undă. Aceste descoperiri au condus la elaborarea teoriei dualității undă-particulă de către Louis-Victor de Broglie în 1924, care stabilește că la nivel subatomic entitățile prezintă simultan atât proprietăți de particulă cât și proprietăți de undă. Modelul atomic al
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
că particulele subatomice pot uneori fi descrise ca particule iar alteori ca undă. Aceste descoperiri au condus la elaborarea teoriei dualității undă-particulă de către Louis-Victor de Broglie în 1924, care stabilește că la nivel subatomic entitățile prezintă simultan atât proprietăți de particulă cât și proprietăți de undă. Modelul atomic al lui Bohr a fost dezvoltat după ce de Broglie a descoperit proprietățile de undă ale electronului. Conform concluziilor lui de Broglie, electronii pot exista doar în acele stări care permit existența unei unde
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
introduce o incertitudine asupra valorilor celorlalte caracteristici ale acestuia. "Anumite perechi de caracteristici pur și simplu nu pot fi măsurate simultan cu un nivel ridicat de precizie." Dacă sunt efectuate măsurători simultane ale caracteristicilor corelate (precum poziția și momentul unei particule) în mai multe sisteme identice, vor exista inevitabil diferențe între valorile măsurate a.î. diferența dintre produsul lor este egală sau mai mare decât formula 20/2." În 1925 Heisenberg a publicat un articol intitulat " Reinterpretarea cinematicii și a relațiilor mecanice
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
informația astfel arătând clar și ordinea în care calculele trebuie efectuate, reflectând simbolic rezultatele neașteptate obținute în studiul lumii cuantice reale. Heisenberg a descris mecanica cuantică într-un mod folosit și anterior și care trata un electron ca pe o particulă oscilatorie încărcată electric. Utilizarea de către Bohr a acestei analogii i-a permis lui Heisenberg să explice de ce raza orbitelor electronilor pot lua doar anumite valori. Această interpretare a rezultatelor experimentale și teoria cuantică pe care Heisenberg a elaborat-o în
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
deplasa în modul ciudat pe care Heisenberg îl descrie ca având loc în interiorul atomilor. Amplitudinea poziției și momentului care au o perioadă de 2π precum un ciclu dintr-o undă este descrisă prin Serii Fourier. Heisenberg a descris proprietățile de particulă ale electronului dintr-o undă prin poziția și momentul acestuia. Când aceste amplitudini ale poziției și momentului sunt măsurate și înmulțite, se obține intensitatea. Totuși, el a descoperit că dacă poziția și momentul sunt măsurate și apoi înmulțite în această
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
să observe că descrierea matematică se potrivea cu comportamentul cuantic observat al electronului. Mecanica matriceală a fost prima definire completă a mecanicii cuantice, legile și proprietățile sale descriind complet comportamentul electronului. A fost apoi extinsă pentru a se aplica tuturor particulelor subatomice. Foarte repede după ce mecanica matriceală a fost prezentată lumii, Schrödinger, în mod independent, a furnizat o teorie cuantică a undelor care părea să nu aibă nici o asemănare cu teoria lui Heisenberg. Era mai simplă din punct de vedere al
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
că cele două teorii duc fundamental la aceleași rezultate în toate situațiile. Apoi Dirac a pus ideea ne-comutativității în centrul propriei teorii cuantice și a dovedit că formulările lui Heisenberg respectiv Schrödinger erau cazuri speciale ale teoriei sale. Pentru că particulele pot fi descrise ca unde, către finalul lui 1925 Erwin Schrödinger a analizat modul în care arată un electron privit ca o undă în jurul nucleului atomic. Folosind acest model, și-a formulat ecuațiile pentru particule-unde. În loc să descrie atomul prin analogia
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
la acest nou mod de a privi materia și energia la nivel atomic. În formula mecanicii matriciale Heisenberg a descoperit o eroare sau o diferență de h/4formula 21 între poziție și moment. Cu cât este mai precis determinată poziția unei particule, cu atât mai puțin precis este determinat momentul acesteia iar valoarea minimă a incertitudinii implicate este h/4formula 21. Această concluzie a fost apoi numită " Principiul nedeterminării al lui Heisenberg", sau Principiul incertitudinii. Pentru particulele aflate în mișcare, în mecanica cuantică
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
este mai precis determinată poziția unei particule, cu atât mai puțin precis este determinat momentul acesteia iar valoarea minimă a incertitudinii implicate este h/4formula 21. Această concluzie a fost apoi numită " Principiul nedeterminării al lui Heisenberg", sau Principiul incertitudinii. Pentru particulele aflate în mișcare, în mecanica cuantică există întotdeauna un anumit grad de inexactitate a caracteristicilor măsurate. Un observator poate obține o măsurătoare precisă a poziției sau o măsurătoare precisă a momentului, dar există un anumit grad de imprecizie atunci când măsoară
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
cuantică există întotdeauna un anumit grad de inexactitate a caracteristicilor măsurate. Un observator poate obține o măsurătoare precisă a poziției sau o măsurătoare precisă a momentului, dar există un anumit grad de imprecizie atunci când măsoară simultan poziția și momentul unei particule aflate în mișcare precum electronul. În cazul extrem, o precizie absolută a măsurătorii unei variabile va determina o imprecizie absolută a măsurătorii altei variabile. Heisenberg a spus în una dintre primele conferințe despre principiul incertitudinii referindu-se la modelul atomic
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
s-a efectuat nici o măsurătoare a electronului atunci el nu poate fi descris ca fiind situat într-o anume locație ci în întreg norul simultan. Cu alte cuvinte, mecanica cuantică nu poate oferi rezultate exacte, ci numai probabilitatea ca o particulă să se afle într-o anumită stare cuantică. Heisenberg a mers mai departe și a spus că o particulă aflată în mișcare începe să existe doar odată cu observarea ei. Oricât de stranie și ne-intuitivă pare această aserțiune, mecanica cuantică
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
locație ci în întreg norul simultan. Cu alte cuvinte, mecanica cuantică nu poate oferi rezultate exacte, ci numai probabilitatea ca o particulă să se afle într-o anumită stare cuantică. Heisenberg a mers mai departe și a spus că o particulă aflată în mișcare începe să existe doar odată cu observarea ei. Oricât de stranie și ne-intuitivă pare această aserțiune, mecanica cuantică ne spune totuși care este locația orbitei electronului, norul său de probabilități. Heisenberg vorbea despre particula însăși și nu
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
spus că o particulă aflată în mișcare începe să existe doar odată cu observarea ei. Oricât de stranie și ne-intuitivă pare această aserțiune, mecanica cuantică ne spune totuși care este locația orbitei electronului, norul său de probabilități. Heisenberg vorbea despre particula însăși și nu despre orbita sa care are o distribuție de probabilitate cunoscută. Este important de notat că cu toate că Heisenberg a folosit pentru electron în matricile sale un set infinit de poziții, asta nu înseamnă că electronul se poate afla
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
următoarei n-sfere. Fizica clasică a arătat începând cu Newton că dacă este cunoscută poziția stelelor și a planetelor precum și detalii despre modul lor de mișcare atunci poate fi prezis locul în care acestea se vor afla în viitor. Pentru particulele subatomice, Heisenberg a invalidat această concepție arătând că datorită principiului incertitudinii nu se poate știi cu precizie atât poziția cât și momentul unei particule la un anumit moment, astfel încât modul său de mișcare din viitor nu poate fi determinat, ci
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
de mișcare atunci poate fi prezis locul în care acestea se vor afla în viitor. Pentru particulele subatomice, Heisenberg a invalidat această concepție arătând că datorită principiului incertitudinii nu se poate știi cu precizie atât poziția cât și momentul unei particule la un anumit moment, astfel încât modul său de mișcare din viitor nu poate fi determinat, ci poate fi descris doar un set de posibilități. Aceste noțiuni care decurg din principiul incertitudinii se aplică doar la nivel subatomic și este o
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
computere la lumina fluorescentă sau tehnicile de scanare ale corpului uman. Ecuația de undă a lui Schrödinger, cu funcția sa de undă unică pentru un electron singur a fost extinsă în distribuția de probabilitate prin care Heisenberg a cuantificat comportamentul particulelor asemănătoare electronului. Asta se întâmplă pentru că o undă este în mod natural o perturbație la scară largă și nu doar o particulă punctuală. De aceea, ecuația de undă a lui Schrödinger are aceleași predicții precum cele generate de principiul incertitudinii
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
unică pentru un electron singur a fost extinsă în distribuția de probabilitate prin care Heisenberg a cuantificat comportamentul particulelor asemănătoare electronului. Asta se întâmplă pentru că o undă este în mod natural o perturbație la scară largă și nu doar o particulă punctuală. De aceea, ecuația de undă a lui Schrödinger are aceleași predicții precum cele generate de principiul incertitudinii deoarece incertitudinea localizării este conținută în chiar definiția perturbării la scară largă pe care o generează o undă. Este doar nevoie ca
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
localizării este conținută în chiar definiția perturbării la scară largă pe care o generează o undă. Este doar nevoie ca incertitudinea să fie definită în mecanica matriceală a lui Heisenberg deoarece dezvoltarea s-a făcut ținând cont de aspectele de particulă ale electronului. Ecuația de undă a lui Schrödinger arată că electronul se află mereu în norul său de probabilitate, adică în distribuția sa de probabilitate asemenea unei unde care se extinde. Max Born a descoperit în 1928 că atunci când se
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
în dauna distribuției de probabilitate, adică electronul pare să înceteze pentru moment să prezinte caracteristici de undă. În absența proprietăților de undă nici una dintre definițiile lui Schrödinger referitoare la comportamentul de undă al electronului nu mai are sens. Măsurarea poziției particulei anulează proprietățile sale de undă și ecuația lui Schrödinger eșuează. Când este măsurat, electronul nu mai poate fi descris de către funcția sa de undă, pentru că lungimea sa de undă devine mult mai scurtă și astfel el ajunge legat cuantic de
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
anulează proprietățile sale de undă și ecuația lui Schrödinger eșuează. Când este măsurat, electronul nu mai poate fi descris de către funcția sa de undă, pentru că lungimea sa de undă devine mult mai scurtă și astfel el ajunge legat cuantic de particulele aparatului de măsură, fenomen care este numit colapsul funcției de undă. Termenul eigen-stare derivă din cuvântul german ""eigen"" care înseamnă "inerent" sau "caracteristic." Cuvântul eigen-stare este unul care descrie starea măsurată a unui obiect care posedă caracteristici cuantificabile precum poziție
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
poziție clară, un moment exact, o valoare bine definită a valorilor măsurate și un moment clar în care ea se efectuează. Dimpotrivă, mecanica cuantică afirmă că este imposibil să măsori la un moment determinat valoarea exactă a momentului unui anume particule precum un electron aflat într-o poziție dată. Datorită principiului incertitudinii, se pot face enunțuri atât asupra momentului cât și asupra poziției unei particule doar în termenii unei game de probabilități, adică a unei "distribuții de probabilitate". Eliminarea incertitudinii dintr-
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
afirmă că este imposibil să măsori la un moment determinat valoarea exactă a momentului unui anume particule precum un electron aflat într-o poziție dată. Datorită principiului incertitudinii, se pot face enunțuri atât asupra momentului cât și asupra poziției unei particule doar în termenii unei game de probabilități, adică a unei "distribuții de probabilitate". Eliminarea incertitudinii dintr-un termen maximizează incertitudinea din ceilalți termeni. De aceea devine necesară existența unei modalități de formulare clară a diferenței dintre starea unui obiect care
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]