1,279 matches
-
chimic cationic (încărcat negativ), iar apoi trecând raza printr-o folie subțire pentru a îndepărta electronii din terminalul de mare voltaj, creând raza încarcată pozitiv. Această categorie nu trebuie să fie confundată cu acceleratoarele liniare, acest termen referindu-se la acceleratoarele care folosesc câmpuri electrice oscilante sau ghid de unde. Astfel, cele mai multe acceleratoare aranjate într-o linie dreaptă nu trebuie numite „acceleratoare liniare”. Datorita plafonului de mare voltaj impusă de descărcarea electrică, pentru a accelera particule spre energii mari, sunt utilizate tehnici
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
subțire pentru a îndepărta electronii din terminalul de mare voltaj, creând raza încarcată pozitiv. Această categorie nu trebuie să fie confundată cu acceleratoarele liniare, acest termen referindu-se la acceleratoarele care folosesc câmpuri electrice oscilante sau ghid de unde. Astfel, cele mai multe acceleratoare aranjate într-o linie dreaptă nu trebuie numite „acceleratoare liniare”. Datorita plafonului de mare voltaj impusă de descărcarea electrică, pentru a accelera particule spre energii mari, sunt utilizate tehnici care implică mai mult decât o singură sursă joasă, dar oscilantă
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
voltaj, creând raza încarcată pozitiv. Această categorie nu trebuie să fie confundată cu acceleratoarele liniare, acest termen referindu-se la acceleratoarele care folosesc câmpuri electrice oscilante sau ghid de unde. Astfel, cele mai multe acceleratoare aranjate într-o linie dreaptă nu trebuie numite „acceleratoare liniare”. Datorita plafonului de mare voltaj impusă de descărcarea electrică, pentru a accelera particule spre energii mari, sunt utilizate tehnici care implică mai mult decât o singură sursă joasă, dar oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
sursă joasă, dar oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru a accelera particulele într-o linie sau un cerc, depinzând dacă particulele aparțin unui câmp magnetic în timp ce sunt accelerate, provocând traiectoriile lor să se curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la care este aplicat un câmp încărcat cu
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la care este aplicat un câmp încărcat cu energie alternant. În timp ce particulele se
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la care este aplicat un câmp încărcat cu energie alternant. În timp ce particulele se apropie de o placă, ele sunt accelerate către
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la care este aplicat un câmp încărcat cu energie alternant. În timp ce particulele se apropie de o placă, ele sunt accelerate către aceasta prin intermediul unei plăci cu
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
În timp ce particulele se apropie de viteza luminii, rata de comutare a câmpurilor electrice devine atât de mare, încât operează la frecvența microundelor, astfel, cavitățile rezonante RF sunt folosite în dispozitive cu energii mari în loc de simple plăci. O categorie deosebită de acceleratoare liniare o constituie "acceleratoarele cu undă progresivă", în care accelerarea particulelor se realizează prin acțiunea componentei electrice longitudinale a unui câmp electromagnetic ce se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
de viteza luminii, rata de comutare a câmpurilor electrice devine atât de mare, încât operează la frecvența microundelor, astfel, cavitățile rezonante RF sunt folosite în dispozitive cu energii mari în loc de simple plăci. O categorie deosebită de acceleratoare liniare o constituie "acceleratoarele cu undă progresivă", în care accelerarea particulelor se realizează prin acțiunea componentei electrice longitudinale a unui câmp electromagnetic ce se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază a undei. Acceleratorul liniar
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
constituie "acceleratoarele cu undă progresivă", în care accelerarea particulelor se realizează prin acțiunea componentei electrice longitudinale a unui câmp electromagnetic ce se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază a undei. Acceleratorul liniar prezintă o utilitate esențială ce constă în producerea de electroni de mare energie (de exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice, din cauza pierderilor mari de energie prin
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază a undei. Acceleratorul liniar prezintă o utilitate esențială ce constă în producerea de electroni de mare energie (de exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice, din cauza pierderilor mari de energie prin radiație. Acceleratorii liniari sunt folosiți în medicină, în radioterapie și în chirurgia cu unde radio. Acceleratoarele liniare folosite în medicină folosesc
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
egală cu viteza de fază a undei. Acceleratorul liniar prezintă o utilitate esențială ce constă în producerea de electroni de mare energie (de exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice, din cauza pierderilor mari de energie prin radiație. Acceleratorii liniari sunt folosiți în medicină, în radioterapie și în chirurgia cu unde radio. Acceleratoarele liniare folosite în medicină folosesc un klystron și un aranjament complex de magneți care produc o radiație
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
prezintă o utilitate esențială ce constă în producerea de electroni de mare energie (de exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice, din cauza pierderilor mari de energie prin radiație. Acceleratorii liniari sunt folosiți în medicină, în radioterapie și în chirurgia cu unde radio. Acceleratoarele liniare folosite în medicină folosesc un klystron și un aranjament complex de magneți care produc o radiație cu o energie de 6-30 de milioane de electronvolți
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice, din cauza pierderilor mari de energie prin radiație. Acceleratorii liniari sunt folosiți în medicină, în radioterapie și în chirurgia cu unde radio. Acceleratoarele liniare folosite în medicină folosesc un klystron și un aranjament complex de magneți care produc o radiație cu o energie de 6-30 de milioane de electronvolți (MeV). Electronii pot fi folosiți direct sau pot fi ciocnți de o țintă pentru
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
de electronvolți (MeV). Electronii pot fi folosiți direct sau pot fi ciocnți de o țintă pentru a produce raze X. Siguranța, flexibilitatea și acuratețea razei produsă au înlocuit vechea utilizare a terapiei cu Cobalt-60 ca instrument de tratament. Într-un accelerator circular, particulele se mișcă într-un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
acuratețea razei produsă au înlocuit vechea utilizare a terapiei cu Cobalt-60 ca instrument de tratament. Într-un accelerator circular, particulele se mișcă într-un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc. Această radiație se numește „lumina sincroton” și depinde în mare parte, de masa particulei. De aceea, multe acceleratoare de electroni cu putere mare sunt liniare. Unele acceleratoare, precum sincrotonul sunt create special pentru a produce acea lumină sincroton, adica raze X. Deoarece teoria relativității impune ca materia să se deplaseze mai încet decât viteza luminii în vid în
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc. Această radiație se numește „lumina sincroton” și depinde în mare parte, de masa particulei. De aceea, multe acceleratoare de electroni cu putere mare sunt liniare. Unele acceleratoare, precum sincrotonul sunt create special pentru a produce acea lumină sincroton, adica raze X. Deoarece teoria relativității impune ca materia să se deplaseze mai încet decât viteza luminii în vid în acceleratoare de energii mari, așa și energia crește atunci când
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
de electroni cu putere mare sunt liniare. Unele acceleratoare, precum sincrotonul sunt create special pentru a produce acea lumină sincroton, adica raze X. Deoarece teoria relativității impune ca materia să se deplaseze mai încet decât viteza luminii în vid în acceleratoare de energii mari, așa și energia crește atunci când viteza particulei se apropie de viteza luminii, dar nu o atinge niciodată. De aceea, fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
particulei se apropie de viteza luminii, dar nu o atinge niciodată. De aceea, fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de obicei măsurată în electronvolți (eV). Un important principiu al acceleratoarelor circulare, și a razelor de particule, în general, este acela ca traiectoria particulei să aibă o curbură proporțională cu sarcina acesteia și cu câmpul magnetic, dar invers proporțional cu impulsul. Cel mai des utilizate sunt "acceleratoarele ciclice rezonante" (ciclotron, microtron
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
Un important principiu al acceleratoarelor circulare, și a razelor de particule, în general, este acela ca traiectoria particulei să aibă o curbură proporțională cu sarcina acesteia și cu câmpul magnetic, dar invers proporțional cu impulsul. Cel mai des utilizate sunt "acceleratoarele ciclice rezonante" (ciclotron, microtron, fazotron, sincrotron, sincrofazotron) datorită avantajelor în ceea ce privește economia de spațiu și pierderile minime de energie. Primele acceleratoare circulare au fost ciclotronii, inventați în 1929 de Ernest Lawrence la Universitatea Berkeley din California. Ciclotronii au o singură pereche
Accelerator de particule () [Corola-website/Science/298190_a_299519]