1,451 matches
-
formând cationi proteici: formula 2, cation al proteinei. Reacția stă la baza "electroforezei" proteinelor, datorită incărcării pozitive cationii migrează spre catod, fenomen numit "cataforeză", proteina fiind în acest caz electropozitivă. În mediu bazic proteinele se comportă ca acizii slabi, ele cedând protoni, se formează astfel anioni proteici, care migrează spre anod fenomenul fiind denumit "anaforeză", proteina avînd încărcare electronegativă. formula 3, anion al proteinei. Datorită caracterului amfoter proteinele pot neutraliza cantități mici de substanță acidă sau bazică, avind în acest fel rol de
Proteină () [Corola-website/Science/303840_a_305169]
-
teoretic molecula ar trebui sa fie neutră, în realitate datorită gradului de ionizare mult mai mare a grupării carboxil față de gruparea amino, molecula proteinei va avea un caracter slab acid, în soluția ei întâlnindu-se amfiioni proteici, anioni proteici și protoni (H). Prin acidulare echilibrul reacției se deplasează spre formarea de cationi proteici. La o anumită concentrație a H, proteina devine neutră deoarece gruparea aminică și cea carboxilică sunt la fel de disociate și deci molecula este neutră din punct de vedere electric
Proteină () [Corola-website/Science/303840_a_305169]
-
rapidă a temperaturii și densității. Procesele cu pierdere de energie ce au loc în miez încetează să mai fie în echilibru. Prin fotodezintegrare, radiațiile gamma descompun fierul în nuclee de heliu și în neutroni liberi, absorbind energie, în timp ce electronii și protonii fuzionează prin captură de electroni, producând neutroni și neutrini electronici care părăsesc steaua. Într-o supernovă de tip II, miezul de neutroni nou format are o temperatură inițială de aproximativ 100 miliarde de kelvini (100 GK); de 6000 de ori
Supernovă () [Corola-website/Science/304000_a_305329]
-
bază slabă, care eliberează forma activă în mediu acid la nivelul celulelor parietale, unde se acumulează, inhibînd activitatea H+, K+- ATP-azei, enzimă din membrana celulelor parietale care transferă ionii de hidrogen din citoplasmă în mediul extracelular, având funcție de pompă de protoni(de unde și denumirea claei de inhibitoare a pompei de protoni). Acțiunea ei este rapidă și durabilă, atît în cazul ulcerului gastric, duodenal cît și în tratarea sindromului Zollinger-Ellison. Produsul este format din microcapsule enterosolubile ce conțin omeprazol, acesta fiind labil
Omeprazol () [Corola-website/Science/304082_a_305411]
-
nivelul celulelor parietale, unde se acumulează, inhibînd activitatea H+, K+- ATP-azei, enzimă din membrana celulelor parietale care transferă ionii de hidrogen din citoplasmă în mediul extracelular, având funcție de pompă de protoni(de unde și denumirea claei de inhibitoare a pompei de protoni). Acțiunea ei este rapidă și durabilă, atît în cazul ulcerului gastric, duodenal cît și în tratarea sindromului Zollinger-Ellison. Produsul este format din microcapsule enterosolubile ce conțin omeprazol, acesta fiind labil în mediul acid. Absorbția omeprazolului începe la nivelul intestinului subțire
Omeprazol () [Corola-website/Science/304082_a_305411]
-
Nucleul unui atom este o regiune foarte densă din centrul său, constând din protoni și neutroni. Dimensiunea nucleului este mult mai mică decât dimensiunea atomului însuși; masa unui atom este determinată, aproximativ, doar de masa protonilor și neutronilor și aproape fără nici o contribuție din partea electronilor. Izotopul unui atom este determinat de numărul de neutroni
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
Nucleul unui atom este o regiune foarte densă din centrul său, constând din protoni și neutroni. Dimensiunea nucleului este mult mai mică decât dimensiunea atomului însuși; masa unui atom este determinată, aproximativ, doar de masa protonilor și neutronilor și aproape fără nici o contribuție din partea electronilor. Izotopul unui atom este determinat de numărul de neutroni din nucleu. Diferiți izotopi ai aceluiași element au proprietăți chimice foarte similare deoarece reacțiile chimice depind aproape în întregime de numărul de
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
chimic particular pot fi separați folosindu-se o instalație centrifugă sau un spectrometru de masă. De exemplu, prima metodă este folosită în producerea uraniului îmbogățit din uraniu natural, iar a doua metodă este folosită în datarea cu carbon. Numărul de protoni și neutroni determină, împreună, nuclidul (tipul nucleului). Protonii și neutronii au mase aproape egale (= 1 uam) și numărul lor, adică numărul de masă, este aproximativ egal cu masa atomului. Masa electronilor este foarte mică în comparație cu masa nucleului, atâta timp cât protonul și
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
instalație centrifugă sau un spectrometru de masă. De exemplu, prima metodă este folosită în producerea uraniului îmbogățit din uraniu natural, iar a doua metodă este folosită în datarea cu carbon. Numărul de protoni și neutroni determină, împreună, nuclidul (tipul nucleului). Protonii și neutronii au mase aproape egale (= 1 uam) și numărul lor, adică numărul de masă, este aproximativ egal cu masa atomului. Masa electronilor este foarte mică în comparație cu masa nucleului, atâta timp cât protonul și neutronul sunt, fiecare în parte, de aproximativ 2
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
de protoni și neutroni determină, împreună, nuclidul (tipul nucleului). Protonii și neutronii au mase aproape egale (= 1 uam) și numărul lor, adică numărul de masă, este aproximativ egal cu masa atomului. Masa electronilor este foarte mică în comparație cu masa nucleului, atâta timp cât protonul și neutronul sunt, fiecare în parte, de aproximativ 2.000 de ori mai masivi decât electronul. Un nucleu atomic este cu atât mai stabil cu cât energia medie de legătură dintre nucleoni este mai mare, situație ce se întâlnește cu
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
masivi decât electronul. Un nucleu atomic este cu atât mai stabil cu cât energia medie de legătură dintre nucleoni este mai mare, situație ce se întâlnește cu precădere la nucleele conținând: 2, 8, 20, 28, 50, 82, 126... ("numere magice") protoni sau neutroni. Izotopul Pb-208, de exemplu, are 82 protoni și 126 neutroni. Dacă un nucleu are prea puțini sau prea mulți neutroni, el poate fi instabil și se va dezintegra după o perioadă de timp oarecare. De exemplu, la câteva
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
mai stabil cu cât energia medie de legătură dintre nucleoni este mai mare, situație ce se întâlnește cu precădere la nucleele conținând: 2, 8, 20, 28, 50, 82, 126... ("numere magice") protoni sau neutroni. Izotopul Pb-208, de exemplu, are 82 protoni și 126 neutroni. Dacă un nucleu are prea puțini sau prea mulți neutroni, el poate fi instabil și se va dezintegra după o perioadă de timp oarecare. De exemplu, la câteva secunde după ce au fost creați, atomii de azot-16 (7
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
și 126 neutroni. Dacă un nucleu are prea puțini sau prea mulți neutroni, el poate fi instabil și se va dezintegra după o perioadă de timp oarecare. De exemplu, la câteva secunde după ce au fost creați, atomii de azot-16 (7 protoni, 9 neutroni) se dezintegrează beta către atomi de oxigen-16 (8 protoni, 8 neutroni). În această dezintegrare, forța nucleară slabă transformă un neutron din nucleul de azot într-un proton și un electron. Elementul (atomul) se schimbă deoarece inițial a avut
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
mulți neutroni, el poate fi instabil și se va dezintegra după o perioadă de timp oarecare. De exemplu, la câteva secunde după ce au fost creați, atomii de azot-16 (7 protoni, 9 neutroni) se dezintegrează beta către atomi de oxigen-16 (8 protoni, 8 neutroni). În această dezintegrare, forța nucleară slabă transformă un neutron din nucleul de azot într-un proton și un electron. Elementul (atomul) se schimbă deoarece inițial a avut șapte protoni (fapt pentru care era „azot”), iar acum are opt
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
la câteva secunde după ce au fost creați, atomii de azot-16 (7 protoni, 9 neutroni) se dezintegrează beta către atomi de oxigen-16 (8 protoni, 8 neutroni). În această dezintegrare, forța nucleară slabă transformă un neutron din nucleul de azot într-un proton și un electron. Elementul (atomul) se schimbă deoarece inițial a avut șapte protoni (fapt pentru care era „azot”), iar acum are opt protoni (fapt pentru care este „oxigen”). Multe elemente au izotopi care rămân stabili timp de săptămâni, ani sau
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
neutroni) se dezintegrează beta către atomi de oxigen-16 (8 protoni, 8 neutroni). În această dezintegrare, forța nucleară slabă transformă un neutron din nucleul de azot într-un proton și un electron. Elementul (atomul) se schimbă deoarece inițial a avut șapte protoni (fapt pentru care era „azot”), iar acum are opt protoni (fapt pentru care este „oxigen”). Multe elemente au izotopi care rămân stabili timp de săptămâni, ani sau miliarde de ani. Raza unui nucleon (neutron sau proton) este de ordinul 1
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
8 neutroni). În această dezintegrare, forța nucleară slabă transformă un neutron din nucleul de azot într-un proton și un electron. Elementul (atomul) se schimbă deoarece inițial a avut șapte protoni (fapt pentru care era „azot”), iar acum are opt protoni (fapt pentru care este „oxigen”). Multe elemente au izotopi care rămân stabili timp de săptămâni, ani sau miliarde de ani. Raza unui nucleon (neutron sau proton) este de ordinul 1 fm = 10 m. Raza nucleară poate fi aproximată prin: "R
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
inițial a avut șapte protoni (fapt pentru care era „azot”), iar acum are opt protoni (fapt pentru care este „oxigen”). Multe elemente au izotopi care rămân stabili timp de săptămâni, ani sau miliarde de ani. Raza unui nucleon (neutron sau proton) este de ordinul 1 fm = 10 m. Raza nucleară poate fi aproximată prin: "R" = "R""A" unde " A" este numărul de masă și "R" = 1,2 fm. Raza nucleului reprezintă 0,01% (1/10000) din raza atomului. În felul acesta
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
a condus la modelul Rutherford, în care atomul are un nucleu foarte mic și foarte dens, constituit din particule grele cu sarcină pozitivă și înconjurate de sarcini negative. De exemplu, în acest model, azotul-14 consta dintr-un nucleu cu 14 protoni și 7 electroni, iar nucleul era orbitat de alți 7 electroni. Modelul lui Rutherford a „mers” destul de bine până la studiile privind spinul nuclear, efectuate în 1929 de Franco Rasetti la California Institute of Technology. Încă din 1925 se știa că
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
și 7 electroni, iar nucleul era orbitat de alți 7 electroni. Modelul lui Rutherford a „mers” destul de bine până la studiile privind spinul nuclear, efectuate în 1929 de Franco Rasetti la California Institute of Technology. Încă din 1925 se știa că protonul și electronul au spini 1/2. În modelul Rutherford al atomului de azot-14 cei 14 protoni și 6 electroni trebuie să formeze perechi unii cu alții, astfel încât ultimul electron să confere nucleului un spin 1/2. Rasetti a descoperit că
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
destul de bine până la studiile privind spinul nuclear, efectuate în 1929 de Franco Rasetti la California Institute of Technology. Încă din 1925 se știa că protonul și electronul au spini 1/2. În modelul Rutherford al atomului de azot-14 cei 14 protoni și 6 electroni trebuie să formeze perechi unii cu alții, astfel încât ultimul electron să confere nucleului un spin 1/2. Rasetti a descoperit că azotul-14 are spin 1. În 1930, neputând să ajungă în orașul german Tübingen, la o întâlnire
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
Yukawa a propus prima teorie semnificativă a forțelor nucleare tari pentru a explica menținerea împreună a nucleonilor. Cu lucrările lui Fermi și Yukawa s-a completat modelul modern al atomului. Centrul atomului constă dintr-o bilă compactă de neutroni și protoni care sunt menținuți împreună de către forțele nucleare tari. Nucleele instabile pot suferi dezintegrări alfa, în care ele emit nuclee energetice de heliu, sau dezintegrări beta, în care ele emit electroni sau pozitroni. După una dintre aceste dezintegrări, nucleul rezultat poate
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
același ordin cu aceea a timpului de așteptare; - detectare parabolică: setarea 01 se reglează între semnalele de referință OD și CHD pentru etanol și între semnalele HOD și TMU pentru apă; - se determină valoarea setării de decuplare 02 de la spectrul protonului măsurat de bobina de decuplare pe același tub. O decuplare bună este obținută când 02 se găsește în mijlocul intervalului de frecvență existent între grupele CH3- și CH2-. Este folosit modul de decuplare de bandă largă. Pentru fiecare spectru, se realizează
by Guvernul Romaniei () [Corola-other/Law/86816_a_87603]
-
ar suferi o reacție de fuziune (opusă fisiunii), procesul ar fi de asemenea exotermic, cu eliberare de energie. Variația energiei specifice de legătură cu numărul atomic este datorată interacțiunii a două forțe fundamentale ce acționează asupra nucleonilor ce formează nucleul: protoni și neutroni. Nucleonii sunt legați printr-o forță nucleară tare, atractivă, care contrabalansează repulsia electrostatică dintre protoni. Totuși forța nucleară tare acționează numai pe distanțe extrem de scurte, întrucât se supun potențialului Yukawa. Din această cauză nucleele mari sunt mai slab
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
energie. Variația energiei specifice de legătură cu numărul atomic este datorată interacțiunii a două forțe fundamentale ce acționează asupra nucleonilor ce formează nucleul: protoni și neutroni. Nucleonii sunt legați printr-o forță nucleară tare, atractivă, care contrabalansează repulsia electrostatică dintre protoni. Totuși forța nucleară tare acționează numai pe distanțe extrem de scurte, întrucât se supun potențialului Yukawa. Din această cauză nucleele mari sunt mai slab legate per unitatea de masă decât nucleele mici și spargerea unui nucleu mare în două sau mai
Fisiune nucleară () [Corola-website/Science/304270_a_305599]