143 matches
-
sau TCD (în engleză : DCT sau Discrete Cosine Transform) este o transformată asemănătoare cu transformata Fourier discretă (DFT). Primitiva utilizată în această transformată este un cosinus și deci această transformată generează coeficienți reali, spre diferență de DFT, care face apel la o exponențială complexă generând coeficienți complecși. Există în mai multe variante. Varianta cea mai utilizată este transformata DCT de tip II, notată simplu "DCT". Transformata
Transformata cosinus discretă () [Corola-website/Science/310438_a_311767]
-
este ipotenuza unui triunghi dreptunghic, a cărui catene au lungimile "x - a" și "y - b". Dacă cercul are centrul în origine (0, 0), atunci ecuația se simplifică la Această ecuație poate fi scrisă și parametric folosind funcțiile trigonometrice sinus și cosinus: unde t este o variabilă parametrică, fiind interpretată geometric ca unghiul format de raza care unește punctul "(x,y)" cu originea "(0,0)" cu axa "x". O parametrizare rațională este: În coordonate omogene, fiecare secțiune conică cu ecuația cercului este
Cerc () [Corola-website/Science/305830_a_307159]
-
care, prin transformata Fourier rapidă, este esențial în calculele de mare viteză. Motivul folosirii transformatei Fourier vine de la studiul seriilor Fourier. Prin studiul acestor serii, funcții periodice complicate sunt scrise ca simple sume de unde matematice reprezentate prin funcțiile sinus și cosinus. Datorită proprietăților acestor funcții este posibil să revenim la valoarea fiecărei unde din sumă printr-o integrală. În multe cazuri se dorește folosirea formulei lui Euler, care se scrie sub forma "e" = cos 2"πθ" + "i" sin 2"πθ", pentru
Transformata Fourier () [Corola-website/Science/305957_a_307286]
-
pentru a scrie seria Fourier în termenii undelor de bază "e". Această scriere are avantajul simplificării multor formule implicate în calcul, precum și furnizarea unei formulări pentru seria Fourier mult mai apropiată de definiția din acest articol. Trecerea de la sinus și cosinus la exponențiala complexă face necesară utilizarea coeficienților Fourier complexi. În mod uzual, interpretarea acestor numere complexe este aceea că, se dau amplitudinea undei precum și faza sau unghiul inițial al undei. Această trecere introduce și necesitatea "frecvenței negative". Dacă "θ" este
Transformata Fourier () [Corola-website/Science/305957_a_307286]
-
este definită de următoarea serie Taylor în jurul originii z = 0: unde Γ(z) este funcția Gamma a lui Euler, care reprezinta generalizarea funcției factorial pentru valori z diferite de întregi. Graficul funcției Bessel oscilează ca cel al funcției sinus sau cosinus, diferența fiind aceea că funcția Bessel descrește proporțional cu formula 3 spre infinit, precum și faptul că rădăcinile nu sunt în general periodice, cu excepția celor asimptotice pentru valori mari ale lui z. Pentru valori α diferite de întregi, funcțiile J(z) și
Funcție Bessel () [Corola-website/Science/305359_a_306688]
-
rezultatelor │sin: ● Reducerea la primul cadran; formule │ │ │trigonometrice: sin (a + b), sin (a - b), │ │ │cos (a + b), cos (a - b), sin 2a, cos 2a, ● Modalități de calcul a lungimii unui segment și│ │ │a măsurii unui unghi: teorema sinusurilor și teorema cosinusului CLASA a X-a - 3ore/săpt. (TC+CD) *Font 8* ┌───────────────────────────────────────────────────┬─────────────────────────────────────────────────┐ │ Competențe specifice │ Conținuturi 1. Identificarea caracteristicilor tipurilor de │Mulțimi de numere │ │numere utilizate în algebră și a formei de scriere ● Numere reale: proprietăți ale puterilor cu │ │a unui număr real
ANEXE din 29 august 2014 la Ordinul ministrului educaţiei naţionale nr. 4.430/2014 privind organizarea şi desfăşurarea examenului de bacalaureat naţional - 2015. In: EUR-Lex () [Corola-website/Law/265833_a_267162]
-
de date sunt cunoscute sub denumirea de "spații vectoriale normate" și, respectiv, "spații prehilbertiene", respectiv. Coordonatele spațiului "F" pot fi echipate cu standard: În R, acest lucru reflectă noțiunea comună de unghi între doi vectori x și y, prin legea cosinusurilor: Din această cauză, doi vectori care satisfac relația formula 16 se numesc ortogonali. O variantă importantă a produsului scalar standard este folosită în spațiul Minkowski: R înzestrat cu produsul Lorentz Spre deosebire de produsul scalar standard, acesta nu este : formula 18 ia și valori
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
cu punctele eșantionate. Mulțimea coeficienților este cunoscută sub numele de (DFT) a eșantionului dat. DFT este unul dintre instrumentele-cheie din , un domeniu printre ale cărui aplicații se numără radarul, , . Formatul de imagine JPEG este o aplicație strâns legată de transformarea cosinus discretă. este un algoritm rapid de calcul a transformatei Fourier discrete. Este folosit nu numai pentru calculul coeficienților Fourier ci, folosind , și pentru calculul a două șiruri finite. Ei la rândul lor sunt aplicate în și ca pentru polinoame și
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
colatitudinea, în emisfera opusă); III) Culminația superioară (apogeul) este deasupra orizontului, iar cea inferioară (perigeul) este sub orizont, astfel încât corpul ceresc răsare și apune zilnic. Al treilea caz se aplică pentru obiectele din acea parte a cerului plin egală cu cosinusul latitudinii (la ecuator, și se aplică pentru toate obiectele, cerul rotindu-se în jurul liniei orizontale nord-sud; la poli nu se aplică niciunui obiect, cerul rotindu-se în jurul liniei verticale). Primul și al doilea caz se aplică pentru fiecare jumătate de
Culminație () [Corola-website/Science/319766_a_321095]
-
cu: De exemplu, începând cu unghiul formula 5, putem obține formula: Folosind identitățile pentru unghiurile complementare, avem: Vezi și formula Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată a identităților este disponibilă aici În
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
din cele mai importante funcții trigonometrice, dar în timpurile moderne a scăzut în popularitate datorită calculatoarelor de mână și computerelor. Când θ tinde către zero, versin(θ) este diferența dintre două cantități foarte apropiate, deci, un utilizator al tabelului funcției cosinus are nevoie de o mare acuratețe pentru a obține funcția versin, fiind nevoit să facă tabele separate corespunzătoare. Chiar și cu calculatoarele moderne este de preferat ca pentru unghiuri θ mici să se folosească sin. Un alt avantaj istoric al
Versinus () [Corola-website/Science/320046_a_321375]
-
Următorul tablou arată conversiile pentru câteva unghiuri uzuale: Dacă nu se specifică altfel, toate unghiurile din acest articol sunt date în radiani, iar unghiurile care se termină prin simbolul (°) sunt date în grade sexagesimale. Funcțiile trigonometrice primare sunt sinusul și cosinusul unui unghi. Acestea sunt câteodată abreviate sin("θ") și cos("θ"), "θ" fiind unghiul, dar de multe ori parantezele din jurul unghiului sunt omise, scriindu-se sin "θ" și cos "θ". Tangenta, notată tg sau tan, unui unghi este raportul dintre
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
Acestea sunt câteodată abreviate sin("θ") și cos("θ"), "θ" fiind unghiul, dar de multe ori parantezele din jurul unghiului sunt omise, scriindu-se sin "θ" și cos "θ". Tangenta, notată tg sau tan, unui unghi este raportul dintre sinus și cosinus: În final putem defini funcțiile reciproce, respectiv, secanta (sec) pentru cosinus, cosecanta (cosec sau csc) pentru sinus și cotangenta (ctg sau cot) pentru tangentă: Funcțiile trigonometrice inverse sunt funcții inverse parțiale ale funcțiilor trigonometrice. De exemplu, inversa funcției sinus, cunoscută
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
unghiul, dar de multe ori parantezele din jurul unghiului sunt omise, scriindu-se sin "θ" și cos "θ". Tangenta, notată tg sau tan, unui unghi este raportul dintre sinus și cosinus: În final putem defini funcțiile reciproce, respectiv, secanta (sec) pentru cosinus, cosecanta (cosec sau csc) pentru sinus și cotangenta (ctg sau cot) pentru tangentă: Funcțiile trigonometrice inverse sunt funcții inverse parțiale ale funcțiilor trigonometrice. De exemplu, inversa funcției sinus, cunoscută ca inverse sine (sin) sau arcsine (arcsin or asin), satisface formula
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
inverse parțiale ale funcțiilor trigonometrice. De exemplu, inversa funcției sinus, cunoscută ca inverse sine (sin) sau arcsine (arcsin or asin), satisface formula: iar În acest articol sunt folosite următoarele notații pentru funcțiile trigonometrice inverse: Relația de bază dintre sinus și cosinus este identitatea trigonometrică a lui Pitagora: Aceasta poate fi văzută ca o versiune a teoremei lui Pitagora și se deduce din ecuația "x" + "y" = 1 pentru cercul unitate. Această ecuație poate fi rezolvată fie pentru sinus, fie pentru cosinus: Divizând
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
și cosinus este identitatea trigonometrică a lui Pitagora: Aceasta poate fi văzută ca o versiune a teoremei lui Pitagora și se deduce din ecuația "x" + "y" = 1 pentru cercul unitate. Această ecuație poate fi rezolvată fie pentru sinus, fie pentru cosinus: Divizând identitatea Pitagoreană prin cos "θ" sau sin "θ" se obțin alte două identități: Folosind aceste identități împreună cu identitățile de rapoarte, orice funcție trigonometrică se poate exprima în funcție de alte funcții trigonometrice (cu excepția semnului plus sau minus): Funcțiile versin, coversin, haversin
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
Ele au fost stabilite pentru prima dată în secolul al 10-lea de matematicianul persan Abū al-Wafă' Būzjănī. O metodă de a demonstra aceste identități este aceea de a aplica formula lui Euler. Formulele sumei și diferenței pentru sinus și cosinus pot fi scrise sub formă matricială: În aceste două identități apare o asimetrie care nu apare în cazul sumării unui număr finit de unghiuri. În fiecare produs, există numai factori sinus finiți și factori cosinus cofiniți. Fie "e" (pentru "k
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
și diferenței pentru sinus și cosinus pot fi scrise sub formă matricială: În aceste două identități apare o asimetrie care nu apare în cazul sumării unui număr finit de unghiuri. În fiecare produs, există numai factori sinus finiți și factori cosinus cofiniți. Fie "e" (pentru "k" ∈ {0, ..., "n"}) polinomul simetric elementar de grad "k" în variabilele: pentru "i" ∈ {0, ..., "n"}, adică: Atunci numărul de termeni depinzând de "n". De exemplu: și așa mai departe. Cazul general poate fi demonstrat prin inducție
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
numărul de termeni ai numitorului depind de "n". De exemplu, Această funcție de "x" fiind nucleul lui Dirichlet. Aceastea pot fi obținute fie din identitățile sumei și diferenției, sau din formulelor unghiurilor multiple: Faptul că formula unghiului triplu pentru sinus și cosinus implică puterile aceleiași funcții permite să se facă legătura dintre trisecția unghiului cu rigla și compasul cu rezolvarea ecuației cubice, arătând că acest lucru este în general imposibil. Există o formulă de calcul a identității trigonometrice pentru unghiul triplu, dar
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
tan "θ" folosind relația de recurență: iar cot "nθ" poate fi scrisă în funcție de cot "θ" folosind relația de recurență: Metoda Cebîșev este un algoritm recursiv pentru a afla formula unghiului multiplu "n" cunoscând formulele pentru("n" − 1) și ("n" − 2). Cosinusul pentru "nx" poate fi calculat din cosinusul pentru ("n" − 1) și ("n" − 2) după cum urmează: Similar sin("nx") poate fi calculat din sinusul pentru ("n" − 1)"x" și ("n" − 2)"x": Pentru tangentă este valabilă relația: Setând "α" sau "β
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
cot "nθ" poate fi scrisă în funcție de cot "θ" folosind relația de recurență: Metoda Cebîșev este un algoritm recursiv pentru a afla formula unghiului multiplu "n" cunoscând formulele pentru("n" − 1) și ("n" − 2). Cosinusul pentru "nx" poate fi calculat din cosinusul pentru ("n" − 1) și ("n" − 2) după cum urmează: Similar sin("nx") poate fi calculat din sinusul pentru ("n" − 1)"x" și ("n" − 2)"x": Pentru tangentă este valabilă relația: Setând "α" sau "β" cu 0 găsim formula uzuală a tangentei
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
din sinusul pentru ("n" − 1)"x" și ("n" − 2)"x": Pentru tangentă este valabilă relația: Setând "α" sau "β" cu 0 găsim formula uzuală a tangentei unghiului pe jumătate. Se obțin rezolvând versiunile a doua și a treia a formulelor cosinusului unghiului dublu. iar termenii generali al puterilor funcțiilor sau sunt (pot fi deduși din formula lui Moivre, formula lui Euler sau binomul lui Newton). Indentitățile produsului prin sumă pot fi demonstrate prin aplicarea formulelor de adunare și scădere a unghiurilor
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
important de știut că orice combinație liniară a undelor sinusoidale cu aceeași perioadă sau frevență, dar defazată, este de asemenea o undă sinusoidală cu aceeași perioadă sau frecvență, dar cu alt defazaj. În cazul unei combinații liniare de unde sinus și cosinus (cosinus care este de fapt tot sinus dar defazat cu π/2): în care: sau echivalent Mai general, pentru un defazaj arbitrar: în care: iar Suma sinusurilor și a cosinusurilor cu argumente în progresie aritmetica : Pentru orice "a" și "b
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
de știut că orice combinație liniară a undelor sinusoidale cu aceeași perioadă sau frevență, dar defazată, este de asemenea o undă sinusoidală cu aceeași perioadă sau frecvență, dar cu alt defazaj. În cazul unei combinații liniare de unde sinus și cosinus (cosinus care este de fapt tot sinus dar defazat cu π/2): în care: sau echivalent Mai general, pentru un defazaj arbitrar: în care: iar Suma sinusurilor și a cosinusurilor cu argumente în progresie aritmetica : Pentru orice "a" și "b": în
Identități trigonometrice () [Corola-website/Science/320154_a_321483]