180 matches
-
am ajuns la concluzia că numai anumite energii sunt posibile) își pierde din greutate. Acesta este începutul "revoluției cuantice". Max Planck a crezut un timp că se va putea găsi o justificare a formulei sale în cadrul coerent al mecanicii și electrodinamicii clasice, și că "cuantele" sunt numai un mod "efectiv" de descriere a unei realități clasice mai adânci. Pașii următori esențiali în dezvoltarea teoriei cuantelor, 4 ani mai târziu, sunt datorați lui Albert Einstein, care a luat existența cuantelor "ad litteram
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
1988) a fost un fizician american. a fost unul dintre fizicienii secolului 20 care au exercitat o influență semnificativă, nu numai în fizică, dar și în alte domenii ale cunoașterii umane. Este unul dintre cei care au extins considerabil teoria electrodinamicii cuantice. A participat la Proiectul Manhattan și a fost membru al comisiei de investigare a dezastrului navetei spațiale Challenger. Pentru întreaga sa muncă la dezvoltarea electrodinamicii cuantice, Feynman a fost unul din laureații Premiului Nobel pentru fizică în 1965, alături de
Richard Feynman () [Corola-website/Science/300725_a_302054]
-
alte domenii ale cunoașterii umane. Este unul dintre cei care au extins considerabil teoria electrodinamicii cuantice. A participat la Proiectul Manhattan și a fost membru al comisiei de investigare a dezastrului navetei spațiale Challenger. Pentru întreaga sa muncă la dezvoltarea electrodinamicii cuantice, Feynman a fost unul din laureații Premiului Nobel pentru fizică în 1965, alături de Julian Schwinger și Sin-Itiro Tomonaga. În afara domeniului fizicii teoretice, este creditat cu crearea conceptului revoluționar de computer cuantic, precum și cu explorarea timpurie a acestuia. În domeniul
Richard Feynman () [Corola-website/Science/300725_a_302054]
-
Thomas Johann Seebeck descoperă în 1821 efectul termoelectric, care va sta la baza construcției termocuplului de mai târziu. Unul dintre principalii fondatori ai electromagnetismului a fost André-Marie Ampère (1775 - 1836). Acesta studiază interacțiunea reciprocă a curenților electrici și magneților, forța electrodinamică, iar în 1820 a stabilit formula acestei forțe. Relația dintre electricitate și magnetism este pusă în evidență, în aceeași perioadă, și de Ørsted și François Arago. Pentru experimentele efectuate, Ampère a realizat solenoidul, forma simplificată a bobinei de mai târziu
Istoria electricității () [Corola-website/Science/320539_a_321868]
-
Born cu corpul negru, o ruptură a unui furtun de apă de răcire, soldată cu inundarea laboratorului, l-a făcut pe Lummer să-i spună că nu va ajunge niciodată fizician. În 1905, Albert Einstein a publicat lucrarea sa "Despre electrodinamica corpurilor în mișcare" ce enunța relativitatea restrânsă. Born a fost intrigat, și a început să cerceteze subiectul. Cu mare tristețe a descoperit că și Minkowski cerceta relativitatea restrânsă de-a lungul acelorași linii, dar când i-a scris lui Minkowski
Max Born () [Corola-website/Science/304893_a_306222]
-
să-și facă habilitarea acolo. Born a acceptat. Toeplitz l-a ajutat pe Born să se pună la punct cu pentru a putea lucra cu matricele din spațiile Minkowski utilizate în acest din urmă proiect pentru a reconcilia relativitatea cu electrodinamica. Born și Minkowski s-au înțeles bine, iar munca lor a făcut progrese, dar Minkowski a murit subit de apendicită pe 12 ianuarie 1909. Studenții de la matematică l-au delegat pe Born să vorbească în numele lor la înmormântare. Born a
Max Born () [Corola-website/Science/304893_a_306222]
-
matricelor, pe care îl învățase din studiile sale sub Jakob Rosanes la Universitatea din Breslau. Până în acest moment, matricele fuseseră rareori utilizate de fizicieni; acestea au fost considerate a aparține tărâmului pur matematic. le-a folosit într-o lucrare despre electrodinamică în 1912 și Born le-a folosit în activitatea sa de teoria structurilor cristaline în 1921. Deși matricele erau folosite în aceste cazuri, algebra matricelor cu multiplicarea lor nu intra în peisaj așa cum o făceau în formularea matriceală a mecanicii
Max Born () [Corola-website/Science/304893_a_306222]
-
în întregime atribuită lui Born, care a stabilit și că toate elementele care nu sunt pe diagonala matricei sunt zero. Born a considerat că lucrarea sa cu Jordan cuprinde „cele mai importante principii ale mecanicii cuantice, inclusiv extensia sa la electrodinamică.” Articolul a pus abordarea lui Heisenberg pe o bază matematică solidă. Born a fost surprins să descopere că Paul Dirac gândea la fel ca Heisenberg. În curând, Wolfgang Pauli a folosit metoda matricei pentru a calcula valorile energetice ale atomului
Max Born () [Corola-website/Science/304893_a_306222]
-
profesor de fizică fără a avea doctoratul. În 1953, a ocupat un post la Institute for Advanced Study în Princeton, NJ. În 1957, a devenit un cettățean naturalizat al Statelor Unite. Dyson este bine cunoscut pentru demonstrarea din 1949 a formulelor electrodinamicii cuantice, care existau la acea vreme: diagramele lui Richard Feynman și metoda de operare dezvoltată de Julian Schwinger și Sin-Itiro Tomonaga. Dyson a fost prima persoană (după Feynman) care a apreciat puterea diagramelor Feynman, și lucrarea sa din 1949 (scrisă
Freeman J. Dyson () [Corola-website/Science/322273_a_323602]
-
diagramele Feynman nu erau doar un instrument de calcul, dar și o teorie de fizică. El a dezvoltat normele pentru diagrame care au rezolvat în totalitate problema renormalizării. În lucrările și prelegerile sale Dyson a prezentat teoriile lui Feynman de electrodinamică cuantică, într-o formă care alți fizicieni ar putea să o înțeleagă și a facilitat acceptarea teoriilor lui Feynman de comunitea fizicii. Robert Oppenheimer, în special, a fost convins de către Dyson că noua teorie Feynman a fost la fel de valabile ca
Freeman J. Dyson () [Corola-website/Science/322273_a_323602]
-
Constanta de acțiune h are dimensiunea fizică a acțiunii A care este dată de produsul energie x timp. A = W x t = [Joule x sec]. Acțiunea este mărime fizică din mecanică.Folosind o mărime din mecanică pentru explicarea fenomenelor din electrodinamică, Planck realizează de fapt prima legătură între electromagnetism și mecanică.
Constanta Planck () [Corola-website/Science/308369_a_309698]
-
Relativitatea restrânsă ( sau teoria restrânsă a relativității) este teoria fizică a măsurării în sistemele de referință inerțiale propusă în 1905 de către Albert Einstein în articolul său Despre electrodinamica corpurilor în mișcare. Ea generalizează principiul relativității al lui Galilei — care spunea că toate mișcările uniforme sunt relative, și că nu există stare de repaus absolută și bine definită (nu există sistem de referință privilegiat) — de la mecanică la toate legile
Teoria relativității restrânse () [Corola-website/Science/310177_a_311506]
-
mișcare. Ea generalizează principiul relativității al lui Galilei — care spunea că toate mișcările uniforme sunt relative, și că nu există stare de repaus absolută și bine definită (nu există sistem de referință privilegiat) — de la mecanică la toate legile fizicii, inclusiv electrodinamica. Pentru a evidenția acest lucru, Einstein nu s-a oprit la a lărgi postulatul relativității, ci a adăugat un al doilea postulat: acela că toți observatorii vor obține aceeași valoare pentru viteza luminii indiferent de starea lor de mișcare uniformă
Teoria relativității restrânse () [Corola-website/Science/310177_a_311506]
-
a felului în care sunt legate între ele spațiul și timpul. În particular, relativitatea restrânsă afirmă că este imposibil ca un obiect material să fie accelerat până la viteza luminii. Această teorie a fost formulată pentru a explica aspecte legate de electrodinamica corpurilor în mișcare, acesta fiind titlul articolului original al lui Einstein de la care a pornit formularea teoriei. Puterea argumentului lui Einstein reiese din maniera în care a dedus niște rezultate surprinzătoare și aparent incredibile din două presupuneri simple bazate pe
Teoria relativității restrânse () [Corola-website/Science/310177_a_311506]
-
Electrodinamica e teoria clasică a interacțiunilor electromagnetice la scară macroscopică. Ea studiază forțele care se exercită între corpurile încărcate electric, forțe mediate în spațiu și timp de "câmpul electromagnetic". Teoria a fost elaborată de Maxwell în a doua jumătate a secolului
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
și timp de "câmpul electromagnetic". Teoria a fost elaborată de Maxwell în a doua jumătate a secolului XIX, prin abstractizarea rezultatelor deja cunoscute din electricitate și magnetism și completarea lor cu fapte experimentale și ipoteze teoretice noi. Consecințe imediate ale electrodinamicii maxwelliene au fost afirmarea existenței undelor electromagnetice și constatarea că lumina e de natură electromagnetică și se propagă sub forma de astfel de unde. Unificarea fenomenelor electrice, magnetice și optice, ca manifestări ale unei realități fizice numită câmp electromagnetic, și semnificația
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
electromagnetic, și semnificația de constantă fizică fundamentală pe care a căpătat-o viteza luminii în vid, au avut consecințe importante pe planul cunoașterii. Ele l-au îndrumat pe Einstein, o jumătate de secol mai târziu, către elaborarea teoriei relativității restrânse. Electrodinamica clasică dă o descriere cantitativă corectă a fenomenelor electromagnetice la scară macroscopică și la intensități mari ale câmpului. La scară microscopică, în procese ca emisia și absorbția de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice a dus la teoria cuantică relativistă a interacțiunii electromagnetice: electrodinamica cuantică. Undele electromagnetice au fost generate în laborator de Hertz, la câțiva ani după moartea lui Maxwell. Aplicațiile lor în electrotehnică, radiotehnică și tehnologia comunicațiilor fără fir în general au avut un impact decisiv asupra civilizației moderne. Interacțiunea electromagnetică este
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
electromagnetică obținute de Faraday, le-a reformulat teoretic și le-a completat cu o ipoteză teoretică proprie referitoare la efectul unui câmp electric variabil. Rezultatul a fost "O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field)" — electrodinamica. O consecință importantă a cercetărilor lui Maxwell a fost constatarea că un câmp electromagnetic variabil în timp se propagă sub formă de unde electromagnetice, cu o viteză egală (în limita preciziei datelor experimentale din vremea aceea) cu viteza luminii. Concluzia inevitabilă
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
de Experimentul Michelson-Morley (1887), care urmăreau să pună în evidență existența eterului, au dat rezultate negative. Ipoteza eterului a fost abandonată, câmpul electromagnetic a fost acceptat ca realitate fizică primară, viteza luminii în vid a devenit o constantă fizică fundamentală. Electrodinamica maxwelliană a generat o perspectivă nouă asupra desfășurării fenomenelor fizice în spațiu și în timp; ea a fost un element fundamental pentru Einstein în elaborarea teoriei relativității restrânse (1905). Sursele câmpului electromagnetic sunt sarcinile electrice elementare din materie: electroni încărcați
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
asupra desfășurării fenomenelor fizice în spațiu și în timp; ea a fost un element fundamental pentru Einstein în elaborarea teoriei relativității restrânse (1905). Sursele câmpului electromagnetic sunt sarcinile electrice elementare din materie: electroni încărcați negativ și protoni încărcați pozitiv. În electrodinamica clasică, la scară macroscopică, sarcina electrică apare însă distribuită continuu; distribuția e caracterizată prin densitatea de sarcină formula 1 și densitatea de curent formula 2, funcții de poziție și de timp. Legea conservării sarcinii electrice cere să fie satisfăcută ecuația de continuitate
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații (diferențiale sau integrale) care leagă vectorii câmp electromagnetic de sursele lor. Dimensiunile fizice și valorile numerice ale coeficienților din aceste ecuații depind de sistemul de unități de măsură utilizat. În sistemul internațional de unități, utilizat
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
prin ecuații (diferențiale sau integrale) care leagă vectorii câmp electromagnetic de sursele lor. Dimensiunile fizice și valorile numerice ale coeficienților din aceste ecuații depind de sistemul de unități de măsură utilizat. În sistemul internațional de unități, utilizat curent în aplicațiile electrodinamicii la scară macroscopică, intervin două mărimi fundamentale, definite astfel: "permeabilitatea vidului" (magnetică) și "permitivitatea vidului" (electrică) Ele sunt așadar legate prin relația unde formula 18 este viteza luminii în vid, a cărei valoare e definită ca În studiile teoretice, în special
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
intervin două mărimi fundamentale, definite astfel: "permeabilitatea vidului" (magnetică) și "permitivitatea vidului" (electrică) Ele sunt așadar legate prin relația unde formula 18 este viteza luminii în vid, a cărei valoare e definită ca În studiile teoretice, în special în cele privind electrodinamica la scară microscopică, este preferat "sistemul de unități Gauss"; electrodinamica cuantică utilizează "sistemul de unități Heaviside-Lorentz". În 1864, Maxwell a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, făcând observația: „Aceste ecuații sunt
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
permitivitatea vidului" (electrică) Ele sunt așadar legate prin relația unde formula 18 este viteza luminii în vid, a cărei valoare e definită ca În studiile teoretice, în special în cele privind electrodinamica la scară microscopică, este preferat "sistemul de unități Gauss"; electrodinamica cuantică utilizează "sistemul de unități Heaviside-Lorentz". În 1864, Maxwell a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, făcând observația: „Aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în
Electrodinamică () [Corola-website/Science/327596_a_328925]