149 matches
-
medicament dintr-un complex medicamentos magnetic s-a conceput și realizat un sistem experimental. Acesta este compus dintr-un sistem magnetic și un sistem de circulare a lichidului. Sistemul magnetic este alcătuit dintr-un circuit magnetic compus dintr-un cadru feromagnetic de retur și trei magneți permanenți. Sistemul de circulare a lichidului este constituit dintr-un tub de sticlă plasat în întrefierul circuitului magnetic, în care se introduce complexul medicamentos magnetic. Sistemul mai cuprinde o pompă peristaltica programabila și un mic
SISTEM EXPERIMENTAL PENTRU STUDIUL DINAMIC AL COMPLEXELOR FEROFLUID-MEDICAMENT. by Hinta Ovidiu, Redinciuc Daniela () [Corola-other/Science/84388_a_85713]
-
transformă semnalele luminoase în semnale electrice. În anul 1900, Poliakoff inventează reproducerea sunetului optic cu ajutorul fotocelulei. Cercetările științifice continuă. În 1898, Valdemar Poulsen descoperă, folosind un aparat numit telegrafon, metoda magnetică de înregistrare a sunetului pe un fir din material feromagnetic înfășurat în formă de bobină. Mai târziu procedeul de înregistrare magnetică se va aplica și la film pentru sonorizarea stereofonică a acestuia. Însă acestea nu erau îndeajuns pentru înregistrarea și reproducerea filmului în sala de cinematograf. Să nu uităm că
Film sonor () [Corola-website/Science/299446_a_300775]
-
face cu ajutorul sistemului optic de redare a sunetului. Citirea pistei de sunet se face după fereastra de proiecție cu un decalaj de 20 fotograme pentru a se obține sincronizarea mimică - sunet. Pista magnetică se prezintă ca o depunere de material feromagnetic pe locul rezervat pistei de sunet, de-a lungul lungimii filmului. De menționat că aplicarea se face pe copiile pozitive pentru proiecție în cinema. În funcție de film, (16 mm, 35 mm sau 70 mm) se pot depune una până la opt piste
Film sonor () [Corola-website/Science/299446_a_300775]
-
membru al perechii într-un spin cu direcția în sus și celălalt cu spinul în jos. Astfel, aceste rotiri se anulează reciproc, reducând total momentul de dipol magnetic la zero în unii atomi cu număr par de electroni. În elementele feromagnetice, cum ar fi fierul, cobaltul și nichelul, un număr impar de electroni conduce la existența unui electron nepereche și la prezența unui moment magnetic net. Orbitalii atomilor vecini se suprapun și se atinge o stare de energie mai joasă atunci când
Atom () [Corola-website/Science/297795_a_299124]
-
prezența unui moment magnetic net. Orbitalii atomilor vecini se suprapun și se atinge o stare de energie mai joasă atunci când spinii electronilor nepereche sunt aliniați unul cu celălalt, proces spontan cunoscut sub numele de . Când momentele magnetice ale atomilor materialelor feromagnetice sunt aliniate, materialul poate produce un câmp măsurabil la scară macroscopică. Materialele paramagnetice au atomi cu momentele magnetice întreptate în direcții aleatoare atunci când nu este prezent niciun câmp magnetic, care se aliniază în prezența unui câmp. Nucleul unui atom nu
Atom () [Corola-website/Science/297795_a_299124]
-
si delta), care variază în funcție de temperatură și presiune. O diferență principala printre fazele solide este structura de cristal, sau aranjament, a atomilor. Mai puțin cunoscute sunt stările de agregare precum plasma, condensările Bose-Einstein și condensările fermionice și fazele paramagnetice și feromagnetice ale materialelor magnetice. Proprietățile chimice ale unei substanțe reprezintă acele caracteristici specifice participării în reacțiile chimice. Molul reprezintă unitatea de măsură care determină cantitatea de substanță (numită cantitate chimică). Molul este definit că și numărul de atomi determinat în exact
Chimie () [Corola-website/Science/296531_a_297860]
-
dar în același timp este și foarte fragilă (reziliența ~ 0). De aceea, materialele cu un conținut mare de cementită (în special fontele albe) au o aplicabilitate limitată în industrie. Densitatea sa este mai redusă decât cea a fierului pur. Este feromagnetică până la temperatura de 215°C. În funcție de conținutul de carbon și de tratamentele aplicate. cementita se prezintă la analiza microscopică sub formă lamelară, globulară, aciculară, în benzi, în rețea, în plăci sau în insule. În urma atacului metalografic cu nital, cementita apare
Cementită () [Corola-website/Science/306572_a_307901]
-
până la acționări electrice de puteri foarte mari (pompe, locomotive, macarale). Indiferent de tipul motorului, acesta este construit din două părți componente: stator și rotor. "Statorul" este partea fixă a motorului, în general exterioară, ce include carcasa, bornele de alimentare, armătura feromagnetică statorică și înfășurarea statorică. "Rotorul" este partea mobilă a motorului, plasată de obicei în interior. Este format dintr-un ax și o armătură rotorică ce susține înfășurarea rotorică. Între stator și rotor există o porțiune de aer numită "întrefier" ce
Motor electric () [Corola-website/Science/303140_a_304469]
-
sarcina: mașini-unelte obișnuite, ventilatoare, unele mașini de ridicat, ascensoare, etc. Motorul de inducție trifazat (sau motorul asincron trifazat) este cel mai folosit motor electric în acționările electrice de puteri medii și mari. Statorul motorului de inducție este format din armătura feromagnetică statorică pe care este plasată înfășurarea trifazată statorică necesară producerii câmpului magnetic învârtitor. Rotorul este format din armătura feromagnetică rotorică în care este plasată înfășurarea rotorică. După tipul înfășurării rotorice, rotoarele pot fi de tipul: Prin intermediul inducției electromagnetice câmpul magnetic
Motor electric () [Corola-website/Science/303140_a_304469]
-
cel mai folosit motor electric în acționările electrice de puteri medii și mari. Statorul motorului de inducție este format din armătura feromagnetică statorică pe care este plasată înfășurarea trifazată statorică necesară producerii câmpului magnetic învârtitor. Rotorul este format din armătura feromagnetică rotorică în care este plasată înfășurarea rotorică. După tipul înfășurării rotorice, rotoarele pot fi de tipul: Prin intermediul inducției electromagnetice câmpul magnetic învârtitor va induce în înfășurarea rotorică o tensiune. Această tensiune creează un curent electric prin înfășurare și asupra acestei
Motor electric () [Corola-website/Science/303140_a_304469]
-
câmpului magnetic învârtitor indiferent de încărcarea motorului. Motoarele sincrone se folosesc la acționări electrice de puteri mari și foarte mari de până la zeci de MW. Statorul motorului sincron este asemănător cu statorul motorului de inducție (este format dintr-o armătură feromagnetică statorică și o înfășurare trifazată statorică). Rotorul motorului sincron este format dintr-o armătură feromagnetică rotorică și o înfășurare rotorică de curent continuu. Pot exista două tipuri constructive de rotoare: cu poli înecați și cu poli aparenți. Rotorul cu poli
Motor electric () [Corola-website/Science/303140_a_304469]
-
puteri mari și foarte mari de până la zeci de MW. Statorul motorului sincron este asemănător cu statorul motorului de inducție (este format dintr-o armătură feromagnetică statorică și o înfășurare trifazată statorică). Rotorul motorului sincron este format dintr-o armătură feromagnetică rotorică și o înfășurare rotorică de curent continuu. Pot exista două tipuri constructive de rotoare: cu poli înecați și cu poli aparenți. Rotorul cu poli înecați are armătura feromagnetică crestată spre exterior și în crestătură este plasată înfășurarea rotorică. Acest
Motor electric () [Corola-website/Science/303140_a_304469]
-
înfășurare trifazată statorică). Rotorul motorului sincron este format dintr-o armătură feromagnetică rotorică și o înfășurare rotorică de curent continuu. Pot exista două tipuri constructive de rotoare: cu poli înecați și cu poli aparenți. Rotorul cu poli înecați are armătura feromagnetică crestată spre exterior și în crestătură este plasată înfășurarea rotorică. Acest tip de motor are uzual o pereche de poli și funcționează la turații mari (3000 rpm la 50 Hz). Rotorul cu poli aparenți are armătura feromagentică sub forma unui
Motor electric () [Corola-website/Science/303140_a_304469]
-
metale, ca și masă. Datorită combinării unei rezistențe înalte cu un preț redus, el se folosește în prezent mai ales în cadrul aliajelor, pentru realizarea de diverse piese și structuri. Alături de cobalt și nichel, fierul este unul dintre cele trei materiale feromagnetice care fac posibilă aplicarea practică a electromagnetismului la generatoare electrice, transformatoare și motoare electrice. Aliajele fier-carbon sunt materialele cu cea mai largă răspândire în industrie. Ele se împart în oțeluri, cu un conținut de carbon de până la 2,11 % și
Fier () [Corola-website/Science/302787_a_304116]
-
Totusi unii fizicieni au prezis existenta monopolilor magnetici, un concept analog sarcinii electrice. Feromagnetism , (incluzând și ferimagnetismul) este cel mai frecvent întâlnit și cel mai puternic tip de magnetism responsabil pentru ceea ce noi numim fenomen magnetic. Nu toate substanțele sunt feromagnetice doar anumite metale cum ar fi fierul, nickelul, cobaltul și majoritatea aliajelor lor formează magneți permanenți prin magnetizarea lor sau sunt atrași de magneți.<br> Alte substanțe răspund foarte slab la câmpul magnetic sub acțiunea altor două forme de magnetism
Magnetism () [Corola-website/Science/302841_a_304170]
-
N91), playere („aparate redătoare”) audio digitale, playere video digitale, video-înregistratoare digitale, Personal Digital Assistants (PDA-uri) și console de jocuri video. Discul dur este format de obicei din: Înregistrarea datelor pe hard disk-uri se face prin magnetizarea unui disc feromagnetic denumit platan. Datele înregistrate pe respectivul platan, prin magnetizare, sunt scrise în sistem binar, adică se stochează o înșiruire de 0 și 1. HDD-urile sunt construite dintr-un ax care posedă unul sau mai multe discuri circulare, denumite platane
Disc dur () [Corola-website/Science/298004_a_299333]
-
fizică vectorială ce caracterizează spațiul din vecinătatea unui magnet, electromagnet sau a unei sarcini electrice în mișcare. Acest câmp vectorial se manifestă prin forțele care acționează asupra unei sarcini electrice în mișcare (forță Lorentz), asupra diverselor materiale (paramagnetice, diamagnetice sau feromagnetice după caz). Poate fi măsurat cu magnetometrul. Mărimea care măsoară interacțiunea dintre câmpul magnetic și un material se numește susceptibilitate magnetică. Câmpul magnetic și câmpul electric sunt cele două componente ale câmpului electromagnetic. Prin variația lor, cele două câmpuri se
Câmp magnetic () [Corola-website/Science/311639_a_312968]
-
ul este un material sau un obiect care produce câmp magnetic. Acesta îi conferă proprietăți particulare cum ar fi exercitarea unei forțe de atracție asupra unui material feromagnetic. Grecii au descoperit, în antichitate, aproape de orașul Magnezia din Asia Mică, o piatră care are proprietatea de a atrage bucățile de fier. Această rocă este formată dintr-un minereu numit magnetit. Magneții pot fi de două categorii: magneți naturali (de
Magnet () [Corola-website/Science/311668_a_312997]
-
polului sau nord cu aceeași intensitate că și asupra polului sau sud. S-a dovedit că atomii în starea "s" posedă toți același moment magnetic, iar proiecția acestuia pe axa aleasă poate lua doar două valori: μ=±μ. O bară feromagnetica, atârnata de un fir de cuarț, este magnetizata cu ajutorul unui curent ce trece prin bobina, bară efectuând apoi oscilații de torsiune. Măsurarea experimentală a factorului giromagnetic a condus la următoarele rezultate: Pentru a explica rezultatele celor două experimente, Uhlenbeck și
Spin (fizică) () [Corola-website/Science/311287_a_312616]
-
O inductanță ideală este un dipol care poate înmagazina energia prin intermediul unui câmp magnetic. Ea este realizată dintr-un anumit număr de spire de material bun conductor electric, care, cel mai adesea, înconjoară un circuit din material feromagnetic (bun conductor al câmpului magnetic), a cărui funcție este de a concentra liniile de câmp magnetic induse de curentul ce parcurge bobina. O inductanță este caracterizată de inductivitatea proprie L, care depinde de numărul de spire N și de reluctanța
Inductanță () [Corola-website/Science/306085_a_307414]
-
ul (sau magnetita) este un mineral din grupa oxizilor de fier cu proprietăți feromagnetice, fiind oxidul de fier cel mai rezistent față de acizi și baze, cristalizează în sistemul cubic, cu formula chimică FeO. Ionul de fier din mineral poate fi fier bivalent sau trivalent, de aceea magnetita este prezentată ca oxid de fier(II
Magnetit () [Corola-website/Science/306205_a_307534]
-
aceea magnetita este prezentată ca oxid de fier(II,III); duritatea mineralului pe scara lui Mohs este 5,5 - 6,5, culoarea neagră, urma neagră cu un luciu mat, metalic. a este unul dintre mineralele cu cele mai puternice caractere feromagnetice. La "temperatura Curie" ("formula 1" pragul de temperatură de la care dispar proprietățile feromagnetice) de 578 °C magnetizarea se orientează în mare parte ca magnetizarea terestră, astfel ia naștere un magnet remanent polarizat cu 500 nT (unități Tesla; formula 2). Astfel cristalele de
Magnetit () [Corola-website/Science/306205_a_307534]
-
pe scara lui Mohs este 5,5 - 6,5, culoarea neagră, urma neagră cu un luciu mat, metalic. a este unul dintre mineralele cu cele mai puternice caractere feromagnetice. La "temperatura Curie" ("formula 1" pragul de temperatură de la care dispar proprietățile feromagnetice) de 578 °C magnetizarea se orientează în mare parte ca magnetizarea terestră, astfel ia naștere un magnet remanent polarizat cu 500 nT (unități Tesla; formula 2). Astfel cristalele de magnetită pot conserva în această formă orientarea magnetică terestră. Studiul orientării (polarizării
Magnetit () [Corola-website/Science/306205_a_307534]
-
efect studiat în mecanica cuantică). [[Fișier:Magnetischesmoment magnetit.svg|thumb|200px|right|Figura 2: Antiferromagnetice legături a Momentelor din subgrupa rețelei A-B]] Timpul îndelungat în care a fost folosit și studiat mineralul, permite explicația structurii cristalului. FeO are proprietăți feromagnetice (cu momente de forță magnetică). Ordinea structurii magnetice în magnetită se poate explica numai prin cele două subgrupări a rețelelor din figura 2 după teoria (Antiferomagnetică) a fizicianului francez Louis Néel (1904-2000). In acest model se presupune un schimb de
Magnetit () [Corola-website/Science/306205_a_307534]
-
electric (40mΩm la T<120K).Această proprietate a mineralului a fost studiată și explicată teoretic în anul 1939 de E. J. W. Verwey. [[Categorie:Minerale cubice (cristalizare)]] [[Categorie:Minerale feroase]] [[Categorie:Minerale]] [[Categorie:Minereuri]] [[Categorie:Mineralogie]] [[Categorie:Oxizi]] [[Categorie:Materiale feromagnetice]] [[Categorie:Compuși ai fierului]] [[Categorie:Magnetism]]
Magnetit () [Corola-website/Science/306205_a_307534]