215 matches
-
compus anorganic cu formula NaH, fiind o hidrură a unui metal alcalin. Este o bază puternică folosită în sinteza organică. Deși este o hidrură, se comportă ca o sare ionică, fiind compusă din ioni de Na și H, spre deosebire de alte hidruri covalente, precum boranul, metanul, amoniacul sau apa. Este insolubilă în solvenți organici. Una dintre metodele de obținere ale hidrurii de sodiu sunt încălzirea sodiului metalic la o temperatură între 360—400 °C și trecerea sa printr-un curent de hidrogen
Hidrură de sodiu () [Corola-website/Science/336820_a_338149]
-
organică. Deși este o hidrură, se comportă ca o sare ionică, fiind compusă din ioni de Na și H, spre deosebire de alte hidruri covalente, precum boranul, metanul, amoniacul sau apa. Este insolubilă în solvenți organici. Una dintre metodele de obținere ale hidrurii de sodiu sunt încălzirea sodiului metalic la o temperatură între 360—400 °C și trecerea sa printr-un curent de hidrogen: De asemenea, compusul se mai poate obține și în urma reacției dintre sodiul metalic și hidroxid de sodiu: Hidrura de
Hidrură de sodiu () [Corola-website/Science/336820_a_338149]
-
ale hidrurii de sodiu sunt încălzirea sodiului metalic la o temperatură între 360—400 °C și trecerea sa printr-un curent de hidrogen: De asemenea, compusul se mai poate obține și în urma reacției dintre sodiul metalic și hidroxid de sodiu: Hidrura de sodiu este o bază folosită pe larg și de mare utilitate în sinteza organică. Este un compus capabil să deprotoneze o varietate de acizi slabi Brønsted, pentru a forma derivații corespunzători de sodiu. Substraturile tipice pentru acest tip de
Hidrură de sodiu () [Corola-website/Science/336820_a_338149]
-
capabil să deprotoneze o varietate de acizi slabi Brønsted, pentru a forma derivații corespunzători de sodiu. Substraturile tipice pentru acest tip de reacții conțin legături de tipul O-H, N-H, S-H, fiind astfel alcooli, fenoli, pirazoli și tioli. Hidrura de sodiu poate reduce unii compuși, însă această proprietate nu se extinde și la compușii organici. Trifluorura de bor reacționează cu aceasta, rezultând diboran și fluorură de sodiu: De asemenea, și legăturile omogene de tipul Si-Si și S-S
Hidrură de sodiu () [Corola-website/Science/336820_a_338149]
-
de propulsie", care nu sunt specificate în altă parte în prezenta listă, special concepute pentru utilizări militare; c. "Încărcături pirotehnice", carburanți și substanțe aferente, după cum urmează, precum și amestecurile acestora: 1. carburanți de aviație special realizați pentru scopuri militare; 2. alan (hidrură de aluminiu) (CAS 7784-21-6); 3. carborani; decaboran (CAS 17702-41-9); pentaborani (CAS 19624-22-7 și 18433-84-6) și derivații acestora; 4. hidrazină și derivați, după cum urmează (a se vedea, de asemenea, ML8.d.8. și ML8. d.9. pentru derivații oxidanți ai hidrazinei
EUR-Lex () [Corola-website/Law/252336_a_253665]
-
până în acel moment fascismul fusese mai favorabil păstrării libertății forțelor pieții decât intervenției statului în economie dacă cei doi soți aveau stăpâni diferiți și aceștia nu cădeau de acord copiii rezultați erau împărțiți între stăpâni acestea sînt sărurile acizilor slabi hidrura de rubidiu superperoxidul de rubidiu nitrura fosfura și a ele furnizează structura pe care sunt montate celelalte și în jurul căreia se rotesc în ciuda nenorocirilor economice și competiția susținută de film muzicalul a supraviețuit turismul este călătoria realizată în scopul recreării
colectie de fraze din wikipedia in limba romana [Corola-website/Science/92305_a_92800]
-
în reacțiile cu metalele alcaline și cu compușii organomagnezieni (compuși Grignard), la fel ca și pirolul. Explicația ar sta în valoarea pKa a protonului din legătura cu azotul.Această valoare este de 21 în DMSO, deci bazele tari de tipul hidrurii de sodiu sau butil-litiul și un mediu de reacție anhidru sunt necesare pentru deprotonare.Sarea anionului indol poate reacționa pe 2 căi: Pentru același motiv solvenții aprotici de tipul DMF(dimetilformamida( și DMSO (dimetilsulfoxid)sunt folosiți ca mediu de reacție
Indol () [Corola-website/Science/304582_a_305911]
-
AcF, AcCl, AcBr, AcOF, AcOCl, AcOBr, AcS, AcO și AcPO. Toți compușii menționați sunt similari cu cei ai lantanului, arătând că, în general, compușii actiniului prezintă starea de oxidare +3. Actiniul reacționează cu hidrogenul la temperatura de 200 °C, formând hidruri non-stoechiometrice, casante, de culoare închisă, care sunt bune conducătoare de electricitate. AcH poate să reacționeze cu hidrogenul pentru a forma AcH, având ca rezultat pierderea conductivității electrice. AcH este o substanță neagră în care atomii de hidrogen ocupă noduri ale
Actiniu () [Corola-website/Science/303164_a_304493]
-
producere prin procesarea gazelor naturale. Cel mai răspândit izotop al hidrogenului este protiul, care este alcătuit dintr-un singur proton în nucleu și un electron în învelișul electronic. În compușii ionici poate avea sarcină negativă (anion cunoscut sub numele de hidrură, H) sau sarcină pozitivă H (cation). Hidrogenul formează compuși chimici cu majoritatea elementelor din sistemul periodic și este prezent în apă și în mulți dintre compușii organici. Are un rol important în reacțiile acido-bazice, acestea bazându-se pe schimbul de
Hidrogen () [Corola-website/Science/297141_a_298470]
-
de hidrogen, ce este un factor important în stabilitatea multor molecule biologice. Hidrogenul poate forma compuși și cu elementele mai puțin electronegative, cum ar fi metalele sau semimetalele, având o sarcină parțial negativă. Acești compuși sunt cunoscuți sub numele de hidruri. Hidrogenul formează o varietate de compuși cu carbonul. Datorita asocierii în general a acestora cu organismele vii, aceștia sunt numiți compuși organici; cu studierea lor se ocupă chimia organică, iar cu studiul rolului lor în organismele vii - biochimia. În unele
Hidrogen () [Corola-website/Science/297141_a_298470]
-
organic” se referă doar la un compus ce conține carbon. Însă majoritatea substanțelor organice prezintă și hidrogen, iar legătura carbon-hidrogen determină multe din particularitățile lor. De aceea, legăturile carbon-hidrogen sunt prezente în unele definiții ale cuvântului „organic”. În chimia anorganică hidrurile pot reprezenta catene de legături între doi ioni metalici ai unei combinații complexe. Această funcție se întâlnește la elementele din grupa 13, cu precădere la boruri și compușii complecși ai aluminiului. Compușii hidrogenului sunt adesea numiți „hidruri”, acest termen fiind
Hidrogen () [Corola-website/Science/297141_a_298470]
-
În chimia anorganică hidrurile pot reprezenta catene de legături între doi ioni metalici ai unei combinații complexe. Această funcție se întâlnește la elementele din grupa 13, cu precădere la boruri și compușii complecși ai aluminiului. Compușii hidrogenului sunt adesea numiți „hidruri”, acest termen fiind uneori impropriu utilizat. „Hidrură” definește o substanță în care atomul de H are caracter anionic sau sarcină negativă, deci H, fiind utilizat pentru compușii hidrogenului cu un element mai electropozitiv. Existența anionului hidrură, sugerată de Gilbert N.
Hidrogen () [Corola-website/Science/297141_a_298470]
-
de legături între doi ioni metalici ai unei combinații complexe. Această funcție se întâlnește la elementele din grupa 13, cu precădere la boruri și compușii complecși ai aluminiului. Compușii hidrogenului sunt adesea numiți „hidruri”, acest termen fiind uneori impropriu utilizat. „Hidrură” definește o substanță în care atomul de H are caracter anionic sau sarcină negativă, deci H, fiind utilizat pentru compușii hidrogenului cu un element mai electropozitiv. Existența anionului hidrură, sugerată de Gilbert N. Lewis în 1916 pentru elementele din prima
Hidrogen () [Corola-website/Science/297141_a_298470]
-
hidrogenului sunt adesea numiți „hidruri”, acest termen fiind uneori impropriu utilizat. „Hidrură” definește o substanță în care atomul de H are caracter anionic sau sarcină negativă, deci H, fiind utilizat pentru compușii hidrogenului cu un element mai electropozitiv. Existența anionului hidrură, sugerată de Gilbert N. Lewis în 1916 pentru elementele din prima grupă și a doua principală, a fost pusă în evidență în 1920 de către Moers prin electroliza topiturii de hidrură de litiu (LiH), când a fost produsă o cantitate stoechiometrică
Hidrogen () [Corola-website/Science/297141_a_298470]
-
pentru compușii hidrogenului cu un element mai electropozitiv. Existența anionului hidrură, sugerată de Gilbert N. Lewis în 1916 pentru elementele din prima grupă și a doua principală, a fost pusă în evidență în 1920 de către Moers prin electroliza topiturii de hidrură de litiu (LiH), când a fost produsă o cantitate stoechiometrică de hidrogen la anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul
Hidrogen () [Corola-website/Science/297141_a_298470]
-
în 1916 pentru elementele din prima grupă și a doua principală, a fost pusă în evidență în 1920 de către Moers prin electroliza topiturii de hidrură de litiu (LiH), când a fost produsă o cantitate stoechiometrică de hidrogen la anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri cu toate
Hidrogen () [Corola-website/Science/297141_a_298470]
-
Moers prin electroliza topiturii de hidrură de litiu (LiH), când a fost produsă o cantitate stoechiometrică de hidrogen la anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri cu toate elementele din grupele principale, numărul și combinațiile posibile diferă de la o grupă la alta. Hidrura de indiu nu a
Hidrogen () [Corola-website/Science/297141_a_298470]
-
a fost produsă o cantitate stoechiometrică de hidrogen la anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri cu toate elementele din grupele principale, numărul și combinațiile posibile diferă de la o grupă la alta. Hidrura de indiu nu a fost încă identificată, însă există o multitudine de compuși complecși
Hidrogen () [Corola-website/Science/297141_a_298470]
-
anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri cu toate elementele din grupele principale, numărul și combinațiile posibile diferă de la o grupă la alta. Hidrura de indiu nu a fost încă identificată, însă există o multitudine de compuși complecși ai săi. Oxidarea hidrogenului, adică îndepărtarea electronului său, decurge
Hidrogen () [Corola-website/Science/297141_a_298470]
-
este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri cu toate elementele din grupele principale, numărul și combinațiile posibile diferă de la o grupă la alta. Hidrura de indiu nu a fost încă identificată, însă există o multitudine de compuși complecși ai săi. Oxidarea hidrogenului, adică îndepărtarea electronului său, decurge teoretic cu formarea H, ion ce nu conține niciun electron în învelișul electronic și un proton în
Hidrogen () [Corola-website/Science/297141_a_298470]
-
aplica parțial și în cazul utilizării radiației solare concentrate. Randamentul, respectiv potențialul de îmbunătățire cel mai mare, la nivelul de cunoștințe actual, prezintă procedeul acid sulfuric - iod: la 120 °C reacționează iodul și bioxidul de sulf cu apa și rezultă hidrură de iod și acid sulfuric După separare celor două componente rezultate, la 850 °C, acidul sulfuric se descompune în bioxid de sulf și oxigen Din hidrura de iod, la 300 °C rezultă hidrogen și elementul inițial iod. Cu toate că ciclul termochimic
Fabricarea hidrogenului () [Corola-website/Science/307810_a_309139]
-
iod: la 120 °C reacționează iodul și bioxidul de sulf cu apa și rezultă hidrură de iod și acid sulfuric După separare celor două componente rezultate, la 850 °C, acidul sulfuric se descompune în bioxid de sulf și oxigen Din hidrura de iod, la 300 °C rezultă hidrogen și elementul inițial iod. Cu toate că ciclul termochimic are un randament relativ mare (până la 50 %) mai există probleme nerezolvate în ceea ce privește procedurile și materialele utilizate. Ideea de bază este utilizarea directă a radiației solare prin
Fabricarea hidrogenului () [Corola-website/Science/307810_a_309139]
-
Totuși, efectul chimic al californiului poate fi evitat, astfel măsurătorile trebuie făcute luând în considerare și timpul trecut. Mai sunt cunoscuți câțiva compușii ai berkeliului-249 cu azotul, fosforul, arsenul și stibiul. Aceștia cristalizează cubic și pot fi preparați prin reacția hidrurii de berkeliu (III) (BkH) sau a berkeliului metalic cu aceste elemente chimice la temperaturi ridicate (de aproximativ 600 °C) sub vid. Sulfura de berkeliu (S) poate fi preparată prin tratarea oxidului de berkeliu cu un amestec de vapori de acid
Berkeliu () [Corola-website/Science/305268_a_306597]
-
și cristalizează în sistemul de cristalizare cubic. Hidroxizii de berkeliu cu valență trei și patru sunt stabili în soluții de hidroxid de sodiu . Fosfatul de berkeliu (III) (BkPO) este un compus solid ce prezintă fenomenul de fluorescență de culoare verde. Hidrurile de berkeliu sunt produse prin reacția metalului cu hidrogen gazos la o temperatură de aproximativ 250 °C. Acestea nu sunt stoichiometrice cu formula nominală BkH (0 < x < 1). Din punct de vedere cristalin, trihidrura de berkeliu are cristale hexagonale, iar
Berkeliu () [Corola-website/Science/305268_a_306597]
-
32 volți. Pe Marte, cele două panouri solare produc energie cu o putere de ; în contrast, aceste panouri ar produce 3000 wați pe o orbită comparabilă în jurul Pământului, întrucât acesta este mai aproape de Soare. "MRO" are două baterii reîncărcabile cu hidrura de nichel utilizată pentru alimentarea navei atunci când nu este cu fața la soare. Fiecare baterie are o capacitate de stocare de 50 amperi-oră (180 kC). Nu se pot folosi toată capacitatea de stocare a bateriilor din cauza constrângerilor de tensiune, dar ele permit
Mars Reconnaissance Orbiter () [Corola-website/Science/317128_a_318457]