13,759 matches
-
voltaj, care transformă curentul alternativ în curent continuu, sau generatorul Van de Graaff care folosește electricitatea statică. Cele mai mari și puternice acceleratoare, cum ar fi RHIC, Large Hadron Collider (LHC) și tevatronul sunt folosite în fizica particulelor. Acceleratoarele de particule produc, de asemenea, raze de protoni, care pot produce izotopi medicali sau de cercetare bogați în protoni, în contradicție cu cele bogate în neutroni făcuți în reactoarele de fisiune. Totuși, cercetarea recentă a arătat cum se fac 99Mo, de obicei
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
metodă are încă nevoie de un reactor pentru a produce tritium. Un exemplu al acestui tip de mașinărie este LANSCE din Los Alamos. Istoric vorbind, primele acceleratoare foloseau tehnologia simplă a unui singur mare voltaj (potențial) static pentru a accelera particule încărcate. În timp ce această metodă este încă foarte populară în zilele de astăzi, numărul acceleratoarelor electrostatice depășind cu mult orice altă clasă, ele sunt îndreptate către studiile cu energie mică până la limita de 30 MV (când acceleratorul este plasat într-un
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
electrostatice depășind cu mult orice altă clasă, ele sunt îndreptate către studiile cu energie mică până la limita de 30 MV (când acceleratorul este plasat într-un rezervor). Același mare voltaj poate fi folosit de două ori în cascadă dacă sarcina particulelor poate fi inversată în timp ce sunt în terminal; acest lucru este posibil cu accelerarea nucleului atomic prin adăugarea, întâi, a unui electron sau prin formarea unui compus chimic cationic (încărcat negativ), iar apoi trecând raza printr-o folie subțire pentru a
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
liniare, acest termen referindu-se la acceleratoarele care folosesc câmpuri electrice oscilante sau ghid de unde. Astfel, cele mai multe acceleratoare aranjate într-o linie dreaptă nu trebuie numite „acceleratoare liniare”. Datorita plafonului de mare voltaj impusă de descărcarea electrică, pentru a accelera particule spre energii mari, sunt utilizate tehnici care implică mai mult decât o singură sursă joasă, dar oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru a accelera particulele într-o linie sau un cerc, depinzând dacă particulele aparțin unui
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
plafonului de mare voltaj impusă de descărcarea electrică, pentru a accelera particule spre energii mari, sunt utilizate tehnici care implică mai mult decât o singură sursă joasă, dar oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru a accelera particulele într-o linie sau un cerc, depinzând dacă particulele aparțin unui câmp magnetic în timp ce sunt accelerate, provocând traiectoriile lor să se curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
a accelera particule spre energii mari, sunt utilizate tehnici care implică mai mult decât o singură sursă joasă, dar oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru a accelera particulele într-o linie sau un cerc, depinzând dacă particulele aparțin unui câmp magnetic în timp ce sunt accelerate, provocând traiectoriile lor să se curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
oscilantă, de înaltă tensiune. Acești electrozi pot fi aranjați pentru a accelera particulele într-o linie sau un cerc, depinzând dacă particulele aparțin unui câmp magnetic în timp ce sunt accelerate, provocând traiectoriile lor să se curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
sunt accelerate, provocând traiectoriile lor să se curbeze. Într-un accelerator liniar (linac), particulele sunt accelerate într-o linie dreaptă cu o țintă de interes finală. Acestea sunt foarte des folosite. Sunt folosite pentru a da o energie inițială mică particulelor înainte să fie introduse într-un accelerator circular. Cel mai lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
lung accelerator liniar din lume este SLAC (Stanford Linear Accelerator), având 3 km lumgime. Acceleratoarele liniare de energii mari folosesc sisteme liniare de plăci (sau tuburi cu undă progresivă) la care este aplicat un câmp încărcat cu energie alternant. În timp ce particulele se apropie de o placă, ele sunt accelerate către aceasta prin intermediul unei plăci cu polaritate opusă. Pe când trec prin gaura din placă, polaritatea este inversată astfel încât placa, nu le acceptă și le accelerează către următoarea placă. În mod normal, un
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
sunt accelerate către aceasta prin intermediul unei plăci cu polaritate opusă. Pe când trec prin gaura din placă, polaritatea este inversată astfel încât placa, nu le acceptă și le accelerează către următoarea placă. În mod normal, un curent cu fascicule cu mai multe particule este accelerat, astfel încât un voltaj controlat AC este aplicat fiecărei plăci pentru a repeta acest proces pentru fiecare fascicul. În timp ce particulele se apropie de viteza luminii, rata de comutare a câmpurilor electrice devine atât de mare, încât operează la frecvența
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
nu le acceptă și le accelerează către următoarea placă. În mod normal, un curent cu fascicule cu mai multe particule este accelerat, astfel încât un voltaj controlat AC este aplicat fiecărei plăci pentru a repeta acest proces pentru fiecare fascicul. În timp ce particulele se apropie de viteza luminii, rata de comutare a câmpurilor electrice devine atât de mare, încât operează la frecvența microundelor, astfel, cavitățile rezonante RF sunt folosite în dispozitive cu energii mari în loc de simple plăci. O categorie deosebită de acceleratoare liniare
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
câmpurilor electrice devine atât de mare, încât operează la frecvența microundelor, astfel, cavitățile rezonante RF sunt folosite în dispozitive cu energii mari în loc de simple plăci. O categorie deosebită de acceleratoare liniare o constituie "acceleratoarele cu undă progresivă", în care accelerarea particulelor se realizează prin acțiunea componentei electrice longitudinale a unui câmp electromagnetic ce se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază a undei. Acceleratorul liniar prezintă o utilitate esențială ce constă în
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
simple plăci. O categorie deosebită de acceleratoare liniare o constituie "acceleratoarele cu undă progresivă", în care accelerarea particulelor se realizează prin acțiunea componentei electrice longitudinale a unui câmp electromagnetic ce se propagă într-un ghid de unde de construcție specială; viteza particulelor este egală cu viteza de fază a undei. Acceleratorul liniar prezintă o utilitate esențială ce constă în producerea de electroni de mare energie (de exemplu: peste 40 GeV în acceleratorul de la Stanford), care nu pot fi accelerați în aceeași măsură
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
MeV). Electronii pot fi folosiți direct sau pot fi ciocnți de o țintă pentru a produce raze X. Siguranța, flexibilitatea și acuratețea razei produsă au înlocuit vechea utilizare a terapiei cu Cobalt-60 ca instrument de tratament. Într-un accelerator circular, particulele se mișcă într-un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
o țintă pentru a produce raze X. Siguranța, flexibilitatea și acuratețea razei produsă au înlocuit vechea utilizare a terapiei cu Cobalt-60 ca instrument de tratament. Într-un accelerator circular, particulele se mișcă într-un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
de tratament. Într-un accelerator circular, particulele se mișcă într-un cerc până când obțin suficientă energie. Calea particulelor este curbată în formă de cerc folosind electromagneții. Avantajul acceleratorului circular față de cel liniar este că topologia circulară permite accelerarea continuă, astfel încât particulele pot tranzita la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
la infint. Un alt avantaj este că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
că acceleratorul circular este mai mic decât cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
cel liniar în comparație cu puterea lor (de exemplu, un linac ar trebui să fie extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc. Această radiație se numește „lumina sincroton” și
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
extrem de lung pentru a avea echivalentul puterii unui accelerator circular). În funcție de puterea și accelerația particulelor, acceleratoarele circulare au un dezavantaj: particulele emit radiații ale sincrotronilor. Când o particulă încărcată este accelerată, ea emite radiații electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc. Această radiație se numește „lumina sincroton” și depinde în mare parte, de masa particulei. De aceea, multe acceleratoare de electroni
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
electromagnetice și emisii secundare. Așa cum o particulă, care se deplasează în cerc, accelerează tot timpul către centrul cercului, ea emite în continuu radiații către tangenta la cerc. Această radiație se numește „lumina sincroton” și depinde în mare parte, de masa particulei. De aceea, multe acceleratoare de electroni cu putere mare sunt liniare. Unele acceleratoare, precum sincrotonul sunt create special pentru a produce acea lumină sincroton, adica raze X. Deoarece teoria relativității impune ca materia să se deplaseze mai încet decât viteza
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
sincrotonul sunt create special pentru a produce acea lumină sincroton, adica raze X. Deoarece teoria relativității impune ca materia să se deplaseze mai încet decât viteza luminii în vid în acceleratoare de energii mari, așa și energia crește atunci când viteza particulei se apropie de viteza luminii, dar nu o atinge niciodată. De aceea, fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de obicei măsurată în electronvolți (eV). Un important principiu al acceleratoarelor
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
luminii în vid în acceleratoare de energii mari, așa și energia crește atunci când viteza particulei se apropie de viteza luminii, dar nu o atinge niciodată. De aceea, fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de obicei măsurată în electronvolți (eV). Un important principiu al acceleratoarelor circulare, și a razelor de particule, în general, este acela ca traiectoria particulei să aibă o curbură proporțională cu sarcina acesteia și cu câmpul magnetic, dar
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
dar nu o atinge niciodată. De aceea, fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de obicei măsurată în electronvolți (eV). Un important principiu al acceleratoarelor circulare, și a razelor de particule, în general, este acela ca traiectoria particulei să aibă o curbură proporțională cu sarcina acesteia și cu câmpul magnetic, dar invers proporțional cu impulsul. Cel mai des utilizate sunt "acceleratoarele ciclice rezonante" (ciclotron, microtron, fazotron, sincrotron, sincrofazotron) datorită avantajelor în ceea ce privește
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
fizicenii nu se gândesc, în general, la viteza, ci mai mult la energia particulei (sau impulsul acesteia), de obicei măsurată în electronvolți (eV). Un important principiu al acceleratoarelor circulare, și a razelor de particule, în general, este acela ca traiectoria particulei să aibă o curbură proporțională cu sarcina acesteia și cu câmpul magnetic, dar invers proporțional cu impulsul. Cel mai des utilizate sunt "acceleratoarele ciclice rezonante" (ciclotron, microtron, fazotron, sincrotron, sincrofazotron) datorită avantajelor în ceea ce privește economia de spațiu și pierderile minime de
Accelerator de particule () [Corola-website/Science/298190_a_299519]