1,451 matches
-
a CYP3A4 ( vezi pct . 4. 5 ) . Inhibarea secreției gastrice acide poate avea ca rezultat o expunere mai mică la nilotinib . De aceea , nu se recomandă utilizarea concomitentă cu Tasigna a antiacidelor , a blocantelor receptorilor H2 sau a inhibitorilor pompei de protoni ( vezi pct . 4. 5 ) . Efectul alimentelor Alimentele determină creșterea biodisponibilității nilotinibului . Tasigna nu trebuie administrat împreună cu alimente ( vezi pct . 4. 2 și 4. 5 ) și trebuie administrat la 2 ore după masă . Nu trebuie să se consume alimente timp de
Ro_1022 () [Corola-website/Science/291781_a_293110]
-
alte medicamente cu un potențial mai scăzut de inducere enzimatică . Solubilitatea nilotinibului este dependentă de pH , de aceea absorbția nilotinibului poate fi scăzută de substanțe care inhibă secreția acidului gastric . Administrarea concomitentă a antiacidelor , blocanților H2 sau inhibitorilor pompei de protoni împreună cu Tasigna nu este recomandată . Substanțe ale căror concentrații plasmatice pot fi modificate de către nilotinib In vitro , nilotinibul este un inhibitor relativ puternic al CYP3A4 , CYP2C8 , CYP2C9 , CYP2D6 și al UGT1A1 , putând să determine creșterea concentrațiilor plasmatice ale substanțelor eliminate
Ro_1022 () [Corola-website/Science/291781_a_293110]
-
chirurgicale ; • warfarină - utilizat pentru tratamentul tulburărilor coagulării sângelui ( cum ar fi formarea cheagurilor de sânge sau a trombozelor ) ; • astemizol , terfenadină , cisapridă , pimozidă , chinidină , bepridil sau alcaloizi din secară cornută ( ergotamină , dihidroergotamină ) ; • antiacide , blocante ale receptorilor H2 , inhibitori ai pompei de protoni - utilizate pentru diminuarea acidității din stomac . Aceste medicamente nu trebuie utilizate în timp ce urmați tratament cu Tasigna . Dacă luați oricare dintre aceste medicamente , medicul dumneavoastră vă poate prescrie alte medicamente echivalente în locul acestora . De asemenea , dacă luați deja Tasigna , trebuie să
Ro_1022 () [Corola-website/Science/291781_a_293110]
-
a ajuns la începutul secolului al XX-lea la o imagine a atomilor cu un nucleu dens, punctiform și masiv în jurul căruia „oscilează” electronii. Nucleul atomic însă s-a dovedit mai apoi a fi și el divizibil și conținînd nucleoni (protoni și neutroni). La începutul anilor 1970 s-a demonstrat însă experimental că și nucleonii sunt de fapt compuși, iar componenții lor, botezați „quarcuri” (en: Quark s) de către fizicianul teoretician Murray Gell-Mann, sunt considerați a fi indivizibili, adică particule elementare ca
Quarc () [Corola-website/Science/298330_a_299659]
-
acumula ( sau „condensa”) în aceeași stare cuantică. Quarcurile există in șase feluri : up (u), down (d), strange (s), charm (c), bottom (b) și top (t). Masele lor cresc de la valori mici (quarcul up, doar o a mia parte din masa protonului) până la foarte greu, quarcul top. fiind tot la fel de masiv ca un atom de aur, ceea ce este remarcabil pentru orice particulă elementară. O altă caracteristică tipică a quarcurilor este sarcina electrică fracționară: +2/3 pentru u,c,t și -1/3
Quarc () [Corola-website/Science/298330_a_299659]
-
în SUA—două Tevatroane capabile de astfel de energii înalte și de detectare de bosoni (Higgs ?). Majoritatea particulelor descoperite la energii înalte, în acceleratoare de particule sau în radiațiile cosmice (o lungă serie de peste 150 de particule diferite, între care protonul și neutronul sunt cele mai bine cunoscute) sunt formate din combinații de quarkuri. Aceste particule sunt clasificate în două mari categorii: mezonii (formați din două quarkuri) și barionii (formați din trei quarcuri, cum sunt protonul și neutronul). Protonul (nucleul atomului
Quarc () [Corola-website/Science/298330_a_299659]
-
de particule diferite, între care protonul și neutronul sunt cele mai bine cunoscute) sunt formate din combinații de quarkuri. Aceste particule sunt clasificate în două mari categorii: mezonii (formați din două quarkuri) și barionii (formați din trei quarcuri, cum sunt protonul și neutronul). Protonul (nucleul atomului de hidrogen) este format din doua quarcuri "up" și un quark "down" (uud). Neutronul, partenerul neutru al protonului în formarea nucleelor mai grele, este format din trei quarcuri, doi quarcuri down și un alt quarc
Quarc () [Corola-website/Science/298330_a_299659]
-
între care protonul și neutronul sunt cele mai bine cunoscute) sunt formate din combinații de quarkuri. Aceste particule sunt clasificate în două mari categorii: mezonii (formați din două quarkuri) și barionii (formați din trei quarcuri, cum sunt protonul și neutronul). Protonul (nucleul atomului de hidrogen) este format din doua quarcuri "up" și un quark "down" (uud). Neutronul, partenerul neutru al protonului în formarea nucleelor mai grele, este format din trei quarcuri, doi quarcuri down și un alt quarc up: udd. Astfel
Quarc () [Corola-website/Science/298330_a_299659]
-
în două mari categorii: mezonii (formați din două quarkuri) și barionii (formați din trei quarcuri, cum sunt protonul și neutronul). Protonul (nucleul atomului de hidrogen) este format din doua quarcuri "up" și un quark "down" (uud). Neutronul, partenerul neutru al protonului în formarea nucleelor mai grele, este format din trei quarcuri, doi quarcuri down și un alt quarc up: udd. Astfel, sarcina protonului este u(+2/3) +u(+2/3) +d(-1/3) = +1, iar sarcina neutronului este u(+2/3
Quarc () [Corola-website/Science/298330_a_299659]
-
atomului de hidrogen) este format din doua quarcuri "up" și un quark "down" (uud). Neutronul, partenerul neutru al protonului în formarea nucleelor mai grele, este format din trei quarcuri, doi quarcuri down și un alt quarc up: udd. Astfel, sarcina protonului este u(+2/3) +u(+2/3) +d(-1/3) = +1, iar sarcina neutronului este u(+2/3) +d (-1/3) + d(-1/3) = 0, așa cum au fost măsurate experimental. În 2001 au fost semnalate în experimentele de fizica energiilor
Quarc () [Corola-website/Science/298330_a_299659]
-
cinci quarcuri (penta-quarcuri). Pentru că situația experimentală nu este foarte clară, unele teorii ar permite existența acestui tip de particule. Structura quarcurilor este un lucru despre care se vorbește des din punct de vedere teoretic, dar cu privire la structura fina a spinului protonului există date recente experimentale care atestă contribuții partonice de polarizare a quarcurilor „stranii” din vidul fizic. Există mai multe propuneri pentru o eventuală structură, dar aceste propuneri se bazează mai degrabă pe considerente logice și de bună inspirație, doar cu
Quarc () [Corola-website/Science/298330_a_299659]
-
quarc" (sau „quark”) a fost adoptat ca neologism din limba engleză și este de gen neutru (un quarc, două quarcuri). Până în anul 1968 n-au existat dovezi experimentale ferme de existența quarcurilor. Atunci, ciocniri de înaltă energie de electroni cu protoni (experiențe de împrăștiere) au indicat că electronii sunt împrăștiați de trei constituenți punctuali (quarcurile) din interiorul protonului. În final, în 1995, quarcul „top” a fost observat la Fermi National Accelerator Laboratory (Fermilab) în SUA, și deci toate aromele de quarcuri
Quarc () [Corola-website/Science/298330_a_299659]
-
quarc, două quarcuri). Până în anul 1968 n-au existat dovezi experimentale ferme de existența quarcurilor. Atunci, ciocniri de înaltă energie de electroni cu protoni (experiențe de împrăștiere) au indicat că electronii sunt împrăștiați de trei constituenți punctuali (quarcurile) din interiorul protonului. În final, în 1995, quarcul „top” a fost observat la Fermi National Accelerator Laboratory (Fermilab) în SUA, și deci toate aromele de quarcuri au fost astfel observate.
Quarc () [Corola-website/Science/298330_a_299659]
-
sau aflate în fază de laborator. Hidrogenul poate fi obținut prin electroliza apei, procesul necesitând costuri mai mari decât cel de producere prin procesarea gazelor naturale. Cel mai răspândit izotop al hidrogenului este protiul, care este alcătuit dintr-un singur proton în nucleu și un electron în învelișul electronic. În compușii ionici poate avea sarcină negativă (anion cunoscut sub numele de hidrură, H) sau sarcină pozitivă H (cation). Hidrogenul formează compuși chimici cu majoritatea elementelor din sistemul periodic și este prezent
Hidrogen () [Corola-website/Science/297141_a_298470]
-
H) sau sarcină pozitivă H (cation). Hidrogenul formează compuși chimici cu majoritatea elementelor din sistemul periodic și este prezent în apă și în mulți dintre compușii organici. Are un rol important în reacțiile acido-bazice, acestea bazându-se pe schimbul de protoni între molecule. Fiind singurul atom pentru care soluția analitică a ecuației lui Schrödinger este pe deplin cunoscută, prezintă un rol major în fundamentarea teoriei mecanicii cuantice. Hidrogenul este un gaz puternic reactiv și își găsește aplicații datorită capacității sale chimice
Hidrogen () [Corola-website/Science/297141_a_298470]
-
cu oxigenul formează picături de apă, conform lui Joseph Priestley. Lavoisier a numit gazul „hidrogen”, nomeclatura fiind de origine greacă ("ὕδωρ", "hydro" înseamnă apă, iar "γίγνομαι", "gignomai" înseamnă a naște, a crea). Datorită structurii atomice relativ simple, constituit dintr-un proton și un electron, atomul de hidrogen împreună cu spectrul luminii emise de el, au reprezentat un domeniu central al dezvoltării teoriei structurii atomice. În plus, simplitatea moleculei de H și a cationului H au condus la înțelegerea completă a naturii legăturii
Hidrogen () [Corola-website/Science/297141_a_298470]
-
după numărul de atomi. Se găsește în cantități mari în compoziția stelelor și a planetelor gigantice gazoase. Norii moleculari de H sunt asociați cu formarea stelelor. Hidrogenul joacă un rol-cheie și în exploziile stelare datorate reacțiilor de fuziune nucleară dintre protoni. În Univers, hidrogenul este întâlnit mai ales sub forma de atom și în stare de plasmă. Proprietățile acestora sunt diferite față de cele ale moleculei de hidrogen. Electronul și protonul de hidrogen nu formează legături în starea de plasmă, din cauza conductivității
Hidrogen () [Corola-website/Science/297141_a_298470]
-
rol-cheie și în exploziile stelare datorate reacțiilor de fuziune nucleară dintre protoni. În Univers, hidrogenul este întâlnit mai ales sub forma de atom și în stare de plasmă. Proprietățile acestora sunt diferite față de cele ale moleculei de hidrogen. Electronul și protonul de hidrogen nu formează legături în starea de plasmă, din cauza conductivității electrice diferite și a unei emisii radiative mari (originea luminii emise de Soare și alte stele). Particulele încărcate cu sarcini electrice sunt puternic influențate de câmpurile magnetice și electrice
Hidrogen () [Corola-website/Science/297141_a_298470]
-
ele se calculează folosind modelul lui Bohr. Acesta consideră că nucleul este fix, iar electronul are o traiectorie circulară în jurul acestuia asemănătoare cu planetele ce gravitează în jurul Soarelui (de unde provine denumirea alternativă de "model planetar"). Forța electromagnetică atrage electronul și protonul unul spre celălalt, în timp ce corpurile cerești se atrag datorită gravitației. Potrivit condiței de cuantificare a momentului cinetic postulat de Bohr, valoarea momentului cinetic al electronului este multiplu întreg al constantei reduse al lui Planck, de unde rezultă că în cadrul atomului, electronului
Hidrogen () [Corola-website/Science/297141_a_298470]
-
raze bine stabilite. Aceeastă relație de cuantificare explică spectrul discret al nivelelor energetice. O descriere mai exactă a atomului de hidrogen este dată în fizica cuantică unde se calculează densitatea de probabilitate prin norma funcției de undă a electronului în jurul protonului pe baza ecuației lui Schrödinger sau a formulării lui Feynman cu integrală de drum. Hidrogenul are trei izotopi naturali, H, H și H. Alții, ce au nucleele foarte instabile (H până la H), au fost sintetizați în laborator dar nu au
Hidrogen () [Corola-website/Science/297141_a_298470]
-
liniilor spectrale este important în mecanica cuantică și la studiul prezenței hidrogenului pentru determinarea deplasării spre roșu. Există doi izomeri de spin ai moleculei de hidrogen care diferă prin spinii relativi ai nucleului. În forma de ortohidrogen, spinii celor doi protoni sunt paraleli și formează un triplet; în forma de parahidrogen, spinii sunt antiparaleli și formează un singlet. La temperatură și presiune standard, hidrogenul gazos conține 25% parahidrogen și 75% ortohidrogen („starea normală” a hidrogenului). Proporțiile în care se găsesc orto
Hidrogen () [Corola-website/Science/297141_a_298470]
-
alta. Hidrura de indiu nu a fost încă identificată, însă există o multitudine de compuși complecși ai săi. Oxidarea hidrogenului, adică îndepărtarea electronului său, decurge teoretic cu formarea H, ion ce nu conține niciun electron în învelișul electronic și un proton în nucleu. De accea, H este adesea numit „proton” și are un rol important în teoria protonică a acizilor. Conform teoriei Bronsted-Lowry, acizii sunt acele substanțe care cedează protoni, iar bazele sunt acceptori de protoni. Protonul H nu poate exista
Hidrogen () [Corola-website/Science/297141_a_298470]
-
însă există o multitudine de compuși complecși ai săi. Oxidarea hidrogenului, adică îndepărtarea electronului său, decurge teoretic cu formarea H, ion ce nu conține niciun electron în învelișul electronic și un proton în nucleu. De accea, H este adesea numit „proton” și are un rol important în teoria protonică a acizilor. Conform teoriei Bronsted-Lowry, acizii sunt acele substanțe care cedează protoni, iar bazele sunt acceptori de protoni. Protonul H nu poate exista liber, ci doar în soluții sau în cristale ionice
Hidrogen () [Corola-website/Science/297141_a_298470]
-
ion ce nu conține niciun electron în învelișul electronic și un proton în nucleu. De accea, H este adesea numit „proton” și are un rol important în teoria protonică a acizilor. Conform teoriei Bronsted-Lowry, acizii sunt acele substanțe care cedează protoni, iar bazele sunt acceptori de protoni. Protonul H nu poate exista liber, ci doar în soluții sau în cristale ionice, datorită afinității foarte mari pentru electronii altor elemente. Uneori, termenul de „proton” este utilizat impropriu pentru a se referi la
Hidrogen () [Corola-website/Science/297141_a_298470]
-
în învelișul electronic și un proton în nucleu. De accea, H este adesea numit „proton” și are un rol important în teoria protonică a acizilor. Conform teoriei Bronsted-Lowry, acizii sunt acele substanțe care cedează protoni, iar bazele sunt acceptori de protoni. Protonul H nu poate exista liber, ci doar în soluții sau în cristale ionice, datorită afinității foarte mari pentru electronii altor elemente. Uneori, termenul de „proton” este utilizat impropriu pentru a se referi la hidrogenul cu sarcină pozitivă sau cationul
Hidrogen () [Corola-website/Science/297141_a_298470]