2,111 matches
-
la egalitatea: rezultatul căutat. Teorema rămâne validă dacă unghiul formula 51 este obtuz iar lungimile "r" și "s" nu se suprapun. Teorema lui Pitagora este un caz particular pentru o teorema mai generalizată care exprimă legături dintre laturile oricărui triunghi, numită teorema cosinusului sau, sugestiv, teorema lui Pitagora generalizată, care este exprimată astfel: unde θ este unghiul dintre laturile formula 7 și formula 8. Când θ este de 90 de grade, atunci cos"θ" = 0, astfel formula se reduce la simpla relație a lui
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
Teorema rămâne validă dacă unghiul formula 51 este obtuz iar lungimile "r" și "s" nu se suprapun. Teorema lui Pitagora este un caz particular pentru o teorema mai generalizată care exprimă legături dintre laturile oricărui triunghi, numită teorema cosinusului sau, sugestiv, teorema lui Pitagora generalizată, care este exprimată astfel: unde θ este unghiul dintre laturile formula 7 și formula 8. Când θ este de 90 de grade, atunci cos"θ" = 0, astfel formula se reduce la simpla relație a lui Pitagora. În stereometrie, sau
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
generalizată, care este exprimată astfel: unde θ este unghiul dintre laturile formula 7 și formula 8. Când θ este de 90 de grade, atunci cos"θ" = 0, astfel formula se reduce la simpla relație a lui Pitagora. În stereometrie, sau geometrie spațială, teorema lui Pitagora poate fi aplicată în trei dimensiuni după cum urmează. Se consideră un solid dreptunghiular după cum se poate observa și în figură. Lungimea diagonalei "BD" se regăsește în teorema lui Pitagora astfel: unde aceste trei laturi formează un triunghi dreptunghi
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
la simpla relație a lui Pitagora. În stereometrie, sau geometrie spațială, teorema lui Pitagora poate fi aplicată în trei dimensiuni după cum urmează. Se consideră un solid dreptunghiular după cum se poate observa și în figură. Lungimea diagonalei "BD" se regăsește în teorema lui Pitagora astfel: unde aceste trei laturi formează un triunghi dreptunghi. Folosind diagonala orizontală "BD" și latura verticală "AB", lungimea diagonalei "AD" se găsește printr-o a doua aplicare a teoremei lui Pitagora astfel: sau, dacă se face totul odată
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
și în figură. Lungimea diagonalei "BD" se regăsește în teorema lui Pitagora astfel: unde aceste trei laturi formează un triunghi dreptunghi. Folosind diagonala orizontală "BD" și latura verticală "AB", lungimea diagonalei "AD" se găsește printr-o a doua aplicare a teoremei lui Pitagora astfel: sau, dacă se face totul odată: Acest rezultat este expresia tridimensională pentru magnitudinea unui vector v (diagonala AD) referindu-se la componentele lui ortogonale {v} (cele trei laturi perpendiculare): Această formulare scurtă poate fi privită ca o
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
astfel: sau, dacă se face totul odată: Acest rezultat este expresia tridimensională pentru magnitudinea unui vector v (diagonala AD) referindu-se la componentele lui ortogonale {v} (cele trei laturi perpendiculare): Această formulare scurtă poate fi privită ca o generalizare a teoremei lui Pitagora pentru dimensiuni mai mari. Totuși, acest rezultat este dat doar de aplicarea repetată a teoremei originale a lui Pitagora asupra unei succesiuni de triunghiuri dreptunghice într-o secvență de planuri ortogonale. O generalizare substanțială a teoremei lui Pitagora
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
diagonala AD) referindu-se la componentele lui ortogonale {v} (cele trei laturi perpendiculare): Această formulare scurtă poate fi privită ca o generalizare a teoremei lui Pitagora pentru dimensiuni mai mari. Totuși, acest rezultat este dat doar de aplicarea repetată a teoremei originale a lui Pitagora asupra unei succesiuni de triunghiuri dreptunghice într-o secvență de planuri ortogonale. O generalizare substanțială a teoremei lui Pitagora în spațiul tridimensional este teorema lui De Gua, numită astfel după Jean-Paul de Gua de Malves: Dacă
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
generalizare a teoremei lui Pitagora pentru dimensiuni mai mari. Totuși, acest rezultat este dat doar de aplicarea repetată a teoremei originale a lui Pitagora asupra unei succesiuni de triunghiuri dreptunghice într-o secvență de planuri ortogonale. O generalizare substanțială a teoremei lui Pitagora în spațiul tridimensional este teorema lui De Gua, numită astfel după Jean-Paul de Gua de Malves: Dacă un tetraedru are un vârf format din unghiuri drepte (cum este colțul unui cub), atunci pătratul ariei feței opuse acestui vârf
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
mai mari. Totuși, acest rezultat este dat doar de aplicarea repetată a teoremei originale a lui Pitagora asupra unei succesiuni de triunghiuri dreptunghice într-o secvență de planuri ortogonale. O generalizare substanțială a teoremei lui Pitagora în spațiul tridimensional este teorema lui De Gua, numită astfel după Jean-Paul de Gua de Malves: Dacă un tetraedru are un vârf format din unghiuri drepte (cum este colțul unui cub), atunci pătratul ariei feței opuse acestui vârf este egal cu suma pătratelor ariilor celorlalte
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
Dacă un tetraedru are un vârf format din unghiuri drepte (cum este colțul unui cub), atunci pătratul ariei feței opuse acestui vârf este egal cu suma pătratelor ariilor celorlalte trei fețe. Acest rezultat poate fi generalizat într-o așa-zisă "teoremă a lui Pitagora n-dimensională": Această propoziție este ilustrată în trei dimensiuni cu ajutorul tetraedrului din figură. „Ipotenuza” este baza tetraedrului din spatele figurii, iar „catetele” sunt cele trei laturi care se întâlnesc în vârful din fața figurii. Pe măsură ce se mărește distanța dintre
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
figură. „Ipotenuza” este baza tetraedrului din spatele figurii, iar „catetele” sunt cele trei laturi care se întâlnesc în vârful din fața figurii. Pe măsură ce se mărește distanța dintre bază și vârf, la fel crește și suprafața „catetelor”, în timp ce cea a bazei rămâne fixă. Teorema sugerează faptul că atunci când această distanță atinge o valoare ce permite unghiuri drepte în jurul vârfului, generalizarea teoremei lui Pitagora are aplicabilitate. CU alte cuvinte: Teorema lui Pitagora poate fi generalizată în spațiile prehilbertiene, adică spații de produs vectorial, care sunt
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
vârful din fața figurii. Pe măsură ce se mărește distanța dintre bază și vârf, la fel crește și suprafața „catetelor”, în timp ce cea a bazei rămâne fixă. Teorema sugerează faptul că atunci când această distanță atinge o valoare ce permite unghiuri drepte în jurul vârfului, generalizarea teoremei lui Pitagora are aplicabilitate. CU alte cuvinte: Teorema lui Pitagora poate fi generalizată în spațiile prehilbertiene, adică spații de produs vectorial, care sunt generalizări ale spațiilor euclidiene bidimensionale și tridimensionale. De exemplu, o funcție poate fi considerată ca un vector
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
bază și vârf, la fel crește și suprafața „catetelor”, în timp ce cea a bazei rămâne fixă. Teorema sugerează faptul că atunci când această distanță atinge o valoare ce permite unghiuri drepte în jurul vârfului, generalizarea teoremei lui Pitagora are aplicabilitate. CU alte cuvinte: Teorema lui Pitagora poate fi generalizată în spațiile prehilbertiene, adică spații de produs vectorial, care sunt generalizări ale spațiilor euclidiene bidimensionale și tridimensionale. De exemplu, o funcție poate fi considerată ca un vector cu un număr infinit de componente într-un
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
lor scalar formula 59 este zero. Spațiul prehilbertian, numit și spațiu de produs scalar, este o generalizare a produsului scalar dintre vectori. Conceptul de lungime este înlocuit de conceptul de normă ||v|| unui vector v, definită ca: Întru-un spațiu prehilbertian, teorema lui Pitagora spune că pentru oricare vectori ortogonali v și w avem Aici, vectorii v și w sunt oarecum înrudiți cu laturile unui triunghi dreptunghic cu ipotenuza egală cu suma vectorială v + w. Această formă a teoremei lui Pitagora este
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
-un spațiu prehilbertian, teorema lui Pitagora spune că pentru oricare vectori ortogonali v și w avem Aici, vectorii v și w sunt oarecum înrudiți cu laturile unui triunghi dreptunghic cu ipotenuza egală cu suma vectorială v + w. Această formă a teoremei lui Pitagora este o consecvență a proprietăților produsului scalar: unde produsul scalar ar termenilor este zero, datorită ortogonalității. O generalizare mai profundă a teoremei lui Pitagora legată de spațiile prehilbertiene, referitoare la vectorii neortogonali, este "legea paralelogramului": care spune că
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
cu laturile unui triunghi dreptunghic cu ipotenuza egală cu suma vectorială v + w. Această formă a teoremei lui Pitagora este o consecvență a proprietăților produsului scalar: unde produsul scalar ar termenilor este zero, datorită ortogonalității. O generalizare mai profundă a teoremei lui Pitagora legată de spațiile prehilbertiene, referitoare la vectorii neortogonali, este "legea paralelogramului": care spune că dublul sumei pătratelor lungimilor laturilor unui paralelogram este egal cu suma pătratelor lungimilor diagonalelor. Orice normă care satisface această egalitate este o normă corespondentă
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
normă care satisface această egalitate este o normă corespondentă unui produs scalar. Identitatea pitagoreică poate fi extinsă la sume pentru mai mult de doi vectori ortogonali. Dacă v, v, ..., v sunt vectori ortogonali perechi într-un spațiu prehilbertian, atunci aplicarea teoremei lui Pitagora pentru perechi succesive formate din acești vectori ia forma relației Teorema lui Pitagora are la bază axiomele folosite în geometria euclidiană, dar, de fapt, ea nu are valabilitate în geometriile neeuclidiene. (S-a arătat că teorema lui Pitagora
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
pitagoreică poate fi extinsă la sume pentru mai mult de doi vectori ortogonali. Dacă v, v, ..., v sunt vectori ortogonali perechi într-un spațiu prehilbertian, atunci aplicarea teoremei lui Pitagora pentru perechi succesive formate din acești vectori ia forma relației Teorema lui Pitagora are la bază axiomele folosite în geometria euclidiană, dar, de fapt, ea nu are valabilitate în geometriile neeuclidiene. (S-a arătat că teorema lui Pitagora este de fapt, echivalentă cu axioma paralelelor, adică al cincilea postulat al lui
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
atunci aplicarea teoremei lui Pitagora pentru perechi succesive formate din acești vectori ia forma relației Teorema lui Pitagora are la bază axiomele folosite în geometria euclidiană, dar, de fapt, ea nu are valabilitate în geometriile neeuclidiene. (S-a arătat că teorema lui Pitagora este de fapt, echivalentă cu axioma paralelelor, adică al cincilea postulat al lui Euclid ). Cu alte cuvinte, în geometria neeuclidiană, relația dintre laturile unui triunghi trebuie să aibă o formă diferită de relația pitagoreică. De exemplu, în geometria
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
relația pitagoreică. De exemplu, în geometria sferică, toate cele trei laturi ale unui triunghi dreptunghic (cum ar fi "a", "b" și "c") au lungimea egală cu π/2, și toate unghiurile sale sunt drept, ceea ce se află în contradicție cu teorema lui Pitagora, deoarece Mai jos sunt considerate două cazuri în geometrii neeuclidiene: sferică și hiperbolică. În fiecare caz, ca și în cazul euclidian pentru triunghiuri care nu sunt dreptunghice, rezultatul se află având ca punct de plecare teorema cosinusului. Totuși
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
contradicție cu teorema lui Pitagora, deoarece Mai jos sunt considerate două cazuri în geometrii neeuclidiene: sferică și hiperbolică. În fiecare caz, ca și în cazul euclidian pentru triunghiuri care nu sunt dreptunghice, rezultatul se află având ca punct de plecare teorema cosinusului. Totuși, teorema lui Pitagora rămâne adevărată în geometriile hiperbolică și eliptică dacă și numai dacă suma a două unghiuri este egală cu al treilea, adică "A"+"B" = "C". Laturile sunt apoi relaționate astfel: suma suprafețelor cercurilor de diametre "a
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
lui Pitagora, deoarece Mai jos sunt considerate două cazuri în geometrii neeuclidiene: sferică și hiperbolică. În fiecare caz, ca și în cazul euclidian pentru triunghiuri care nu sunt dreptunghice, rezultatul se află având ca punct de plecare teorema cosinusului. Totuși, teorema lui Pitagora rămâne adevărată în geometriile hiperbolică și eliptică dacă și numai dacă suma a două unghiuri este egală cu al treilea, adică "A"+"B" = "C". Laturile sunt apoi relaționate astfel: suma suprafețelor cercurilor de diametre "a" și "b" sunt
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
dreptunghic aflat pe o sferă de rază "R" (de exemplu, dacă γ din figură este un unghi drept), de laturi "a", "b", "c", relația dintre laturi ia următoarea formă: Această relație poate fi dedusă ca un fiind caz special al teoremei cosinusului sferic, care se aplică tuturor triunghiurilor sferice: Prin explicitarea seriilor Maclaurin pentru funcția cosinus ca o expansiune asimptotică, se poate arăta faptul că în timp ce raza "R" se apropie de infinit și argumentele "a/R", "b/R" și "c/R
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
o expansiune asimptotică, se poate arăta faptul că în timp ce raza "R" se apropie de infinit și argumentele "a/R", "b/R" și "c/R" tind către zero, relația sferică dintre laturile unui triunghi dreptunghic se apropie de forma euclidiană a teoremei lui Pitagora. Substituind expansiunea asimptotică pentru fiecare dintre cosinusuri în relația sferică pentru un triunghi dreptunghic se obține Pentru un triunghi dreptunghic în geometria hiperbolică, cu laturile "a", "b", "c" iar " c" fiind latura opusă unghiului drept, relația dintre laturi
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
vârful opus laturii "c". Folosind serii Maclaurin pentru cosinusul hiperbolic, , se poate arăta faptul că dacă un triunghi hiperbolic devine foarte mic (anume, când "a", "b" și "c" tind spre zero), relația hiperbolică pentru un triunghi dreptunghic se apropie de teorema lui Pitagora. La un nivel infinitezimal, în spațiul tridimensional, teorema lui Pitagora descrie distanța dintre două puncte separate infinitezimal ca: unde "ds" este elementul distanței iar ("dx", "dy", "dz") sunt componentele vectorului ce separă cele două puncte. Un asemenea spațiu
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]