1,451 matches
-
unei mase de materie. Prin urmare, nu repulsia electromagnetică dintre electroni și nucleu este responsabilă pentru două blocuri de lemn plasate una peste care nu sunt unite într-o singură piesă, ci mai degrabă este principiul excludere aplicat electronilor și protonilor care generează forța normală. În fizica materiei condensate, Dyson a mai studiat fazele tranziției modelului Ising într-o dimensiune și valurile rotative În jurul anului 1979, Dyson a lucrat cu Institutul pentru Analiza energiei în studii despre climă. Grupul se afla
Freeman J. Dyson () [Corola-website/Science/322273_a_323602]
-
că discurile sunt de origine extraterestră. susține că pentru propulsia vehiculelor studiate se folosea elementul 115 drept combustibil nuclear. Elementul 115 (numit temporar "ununpentium" (simbol UUP) ar fi o sursă de energie care ar produce efecte antigravitaționale sub bombardament de protoni, împreună cu antimaterie pentru producerea de energie. Elementul 115 amplificat în mod corespunzător pe scară largă ar putea crea o distorsionare sau o ruptură a spațiu-timpului care, de fapt, ar scurtă foarte mult distanță și timpul de călătorie până la o destinație
Bob Lazar () [Corola-website/Science/329705_a_331034]
-
o enzimă care catalizează reacția de oxidare a hidrogenului molecular (H), după cum se poate observa mai jos: Asimilarea hidrogenului (1) este asociată cu reducerea acceptorilor de electroni cum ar fi oxigenul, azotatul, sulfatul, dioxidul de carbon. În sens invers, reducerea protonilor (2) este asociată cu oxidarea electronilor donatori cum ar fi feredoxinele și servește la eliminarea electronilor în exces din celule (cum ar fi în fermentarea piruvatului, CHCOCOO ). Atât compușii cu masă moleculară mică, cât și proteinele precum feredoxinele, citocromii "c
Hidrogenază () [Corola-website/Science/329902_a_331231]
-
generat o perspectivă nouă asupra desfășurării fenomenelor fizice în spațiu și în timp; ea a fost un element fundamental pentru Einstein în elaborarea teoriei relativității restrânse (1905). Sursele câmpului electromagnetic sunt sarcinile electrice elementare din materie: electroni încărcați negativ și protoni încărcați pozitiv. În electrodinamica clasică, la scară macroscopică, sarcina electrică apare însă distribuită continuu; distribuția e caracterizată prin densitatea de sarcină formula 1 și densitatea de curent formula 2, funcții de poziție și de timp. Legea conservării sarcinii electrice cere să fie
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
Radioactivitatea cluster (numită și emisie spontană de ioni grei sau dezintegrare exotică) este un tip de dezintegrare nucleară în care un nucleu părinte cu număr de masă A, având A nucleoni dintre care Z sunt protoni, emite un nucleu (cluster) cu N neutroni și Z protoni, mai greu decât o particulă alfa dar mai ușor decât un fragment de fisiune nucleară. În urma dezintegrării rezultă un nucleu emis (cluster) și un alt nucleu având numărul de masă
Radioactivitate cluster () [Corola-website/Science/330174_a_331503]
-
spontană de ioni grei sau dezintegrare exotică) este un tip de dezintegrare nucleară în care un nucleu părinte cu număr de masă A, având A nucleoni dintre care Z sunt protoni, emite un nucleu (cluster) cu N neutroni și Z protoni, mai greu decât o particulă alfa dar mai ușor decât un fragment de fisiune nucleară. În urma dezintegrării rezultă un nucleu emis (cluster) și un alt nucleu având numărul de masă A = A - A și numărul atomic Z = Z - Z, unde
Radioactivitate cluster () [Corola-website/Science/330174_a_331503]
-
Datele experimentale sunt în concordanță cu valorile prezise. S-a observat un efect de pături puternic: de regulă cel mai scurt timp de înjumătățire este obținut atunci când nucleul fiică are un număr magic de neutroni (N = 126) și/sau de protoni (Z = 82). Radioactivitățile cluster cunoscute până în 2010 sunt: Structura fină în radioactivitatea C a Ra a fost discutată pentru prima dată de către M. Greiner și W. Scheid în 1986. Sspectrometrul supraconductor SOLENO al IPN Orsay a fost folosit începând cu
Radioactivitate cluster () [Corola-website/Science/330174_a_331503]
-
genetic. Într-un grup format din trei atomi de hidrogen legați de un atom de carbon, deslușește electronii carbonului, care nu sunt vizibili individual, ci apar ca un roi în jurul unui nucleu masiv și compact format din 12 nucleoni: șase protoni și șase neutroni, strâns legați laolaltă prin forțele nucleare. Mai departe, când un singur nucleon ajunge să umple cadrul, filmul atinge limita a ce era cunoscut în anul 1977: structura nucleonilor, alcătuiți (probabil, pe atunci) din elemente numite quarci, reprezentați
Powers of Ten () [Corola-website/Science/330427_a_331756]
-
BO) pentru prima data aliniază spinii fiecărui atom ai corpului uman (hidrogenul este utilizat în IRM-clinica) precesie într-o frecvență centrală care este dependentă de intensitatea câmpului magnetic. Pe măsură ce câmpul magnetic este îndreptat în jos de centrul mașinii de IRM, protonii hidrogenului se aliniaza fie către capul sau picioarele pacientului, cu aproximație 50% mergând către fiecare, anulându-se reciproc in mod eficient. Un număr foarte mic de protoni sunt de neegalat și nu sunt anulați, circa 1 la 2 la un
Imagistică prin rezonanță magnetică () [Corola-website/Science/335534_a_336863]
-
magnetic. Pe măsură ce câmpul magnetic este îndreptat în jos de centrul mașinii de IRM, protonii hidrogenului se aliniaza fie către capul sau picioarele pacientului, cu aproximație 50% mergând către fiecare, anulându-se reciproc in mod eficient. Un număr foarte mic de protoni sunt de neegalat și nu sunt anulați, circa 1 la 2 la un milion. Apoi, un puls (B1) de frecvență radio (FR) care este specific pentru hidrogen, este aplicat de către mașina de IRM către partea corpului ce trebuie examinat. Acest
Imagistică prin rezonanță magnetică () [Corola-website/Science/335534_a_336863]
-
și nu sunt anulați, circa 1 la 2 la un milion. Apoi, un puls (B1) de frecvență radio (FR) care este specific pentru hidrogen, este aplicat de către mașina de IRM către partea corpului ce trebuie examinat. Acest puls face ca protonii neegalați să se rotească într-o direcție diferită la o frecvență specifică ([frecvența Larmor]). Totodată, o serie de magneți de gradient pedalează on și off, creind un gradient magnetic, care schimbă principalul câmp magnetic la un nivel specific, permițând imaginilor
Imagistică prin rezonanță magnetică () [Corola-website/Science/335534_a_336863]
-
la starea lor nativă și eliberează energia absorbită de la impulsuri. Această emisie cu putere redusă (în intervalul pW) este detectată de bobinele receptoare în IRM și sunt trimise la un calculator, unde o transformare Fourier inversată (TFI) convertește semnalul de la protoni în date matematice (k-spațiu) într-o poză care poate fi interpretată de către clinician. Tehnica este utilizată pe scară largă în spitale pentru diagnostice medicale, stadializarea bolii și urmărirea fără expunere a corpului la radiații ionizante. RMN-ul are o gama
Imagistică prin rezonanță magnetică () [Corola-website/Science/335534_a_336863]
-
mare de elemente chimice ireductibile. Aparent oportun, pe la începutul secolului al XX-lea, prin diverse experimente cu electromagnetism și radioactivitate, fizicienii au descoperit că așa-numitul „atom indivizibil” este de fapt un conglomerat de diferite particule subatomice (în principal, electroni, protoni și neutroni), care poate exista separat unele de altele. În fapt, în anumite medii extreme, cum ar fi stelele neutronice, temperatura și presiunea extremă împiedică cu totul existența atomilor. Deoarece atomii s-au dovedit a fi divizibili, fizicienii au inventat
Teoria atomică () [Corola-website/Science/337522_a_338851]
-
număr de atomi de hidrogen pe atunci presupus a fi cea mai ușoară particulă l-au condus la concluzia că nucleele de hidrogen sunt particule singulare și un constituent de bază al tuturor nucleelor atomice. El a numit aceste particule protoni. Mai multe experimente ale lui Rutherford au arătat că masele nucleare ale majorității atomilor depășesc pe cel al protonilor pe care îi posedă; el a speculat că acest surplus de masă este compus din niște particule necunoscute, neutre din punct
Teoria atomică () [Corola-website/Science/337522_a_338851]
-
că nucleele de hidrogen sunt particule singulare și un constituent de bază al tuturor nucleelor atomice. El a numit aceste particule protoni. Mai multe experimente ale lui Rutherford au arătat că masele nucleare ale majorității atomilor depășesc pe cel al protonilor pe care îi posedă; el a speculat că acest surplus de masă este compus din niște particule necunoscute, neutre din punct de vedere electric, pe care provizoriu le-a numit „neutroni”. În 1928, Walter Bothe a observat că beriliul emite
Teoria atomică () [Corola-website/Science/337522_a_338851]
-
și, prin măsurarea energiilor particulelor încărcate, el a dedus că radiațiile se compun de fapt din particule neutre electric care nu puteau fi lipsite de masă ca razele gamma, ci trebuia să aibă o masă similară cu cea a unui proton. Chadwick susținea acum că aceste particule sunt neutronii lui Rutherford. Pentru descoperirea neutronului, Chadwick a primit Premiul Nobel în anul 1935. În 1924, Louis de Broglie a avansat ipoteza că toate particule în mișcare—în special particulele subatomice cum ar
Teoria atomică () [Corola-website/Science/337522_a_338851]
-
devină fizica interacției slabe. Neutrinul a fost introdus de Pauli în 1930, ca particulă ipotetică de masă zero sau foarte mică, pentru a satisface conservarea energiei în dezintegrarea beta. În teoria formulată de Fermi în 1934, procesul elementar este neutron → proton + electron + neutrin, iar dezintegrarea beta a unui nucleu cu număr de masă A și număr atomic Z decurge în forma Secțiunea eficace calculată pe baza acestei teorii pentru interacțiile neutrinilor cu nucleele este atât de mică, încât neutrinul a fost
Bruno Pontecorvo () [Corola-website/Science/335686_a_337015]
-
luminoase și adesea foarte active în unde radio. Jeturile sunt compuse din particule încărcate proiectate de un mecanism încă neînțeles, dar care face, fără îndoială, să intervină energia gravitațională gigantică a găurii negre centrale. Aceste particule sunt îndeosebi electroni, pozitroni, protoni și nuclee de atomi izolați de un câmp magnetic intens. Ei părăsesc nucleul cu o viteză apropiată de aceea a luminii și pot chiar să pară mai rapizi decât aceasta printr-un efect optic. Aceste jeturi pot să se întindă
Blazar () [Corola-website/Science/332907_a_334236]
-
fizica statistică, prin particule identice se înțelege o categorie de particule care nu pot fi deosebite între ele, nici măcar în principiu. La scară atomică, sunt identice particulele elementare care posedă aceleași caracteristici fundamentale (masă, sarcină electrică, spin), cum sunt electronii, protonii și neutronii. Dar și sisteme care au o structură internă intră în cadrul acestei definiții dacă această structură rămâne neschimbată în cadrul fenomenului studiat, de exemplu nucleele atomice și atomii. În mecanica statistică clasică, starea unui sistem de particule identice este complet
Particule identice () [Corola-website/Science/333894_a_335223]
-
este o apă care conține mai puțin deuteriu decât apa din natură. Hidrogenul are doi izotopi stabili: protiu și deuteriu. Nucleul de protiu conține un proton iar cel de deuteriu conține un proton și un neutron, ceea ce face ca masa deuteriului să fie dublă față de cea a protiului. De aceea, apa care are molecula formată doar din doi atomi deuteriu legați de un atom de oxigen
Apa cu conținut redus de deuteriu () [Corola-website/Science/333929_a_335258]
-
este o apă care conține mai puțin deuteriu decât apa din natură. Hidrogenul are doi izotopi stabili: protiu și deuteriu. Nucleul de protiu conține un proton iar cel de deuteriu conține un proton și un neutron, ceea ce face ca masa deuteriului să fie dublă față de cea a protiului. De aceea, apa care are molecula formată doar din doi atomi deuteriu legați de un atom de oxigen(DO) se numește și apă grea, iar
Apa cu conținut redus de deuteriu () [Corola-website/Science/333929_a_335258]
-
determină deplasarea unora dintre aceste particule, generând un curent electric. Ce-ar fi să ne imaginăm însă că sârma stă pe loc și magnetul este cel care se mișcă. În acest caz particulele cu sarcină electrică din sârmă (electronii și protonii) nu se mai mișcă, deci nu ar trebui să fie afectate de câmpul magnetic. Și totuși sunt afectate și se formează un flux electric. Acest lucru demonstrează că nu există niciun sistem de referință privilegiat în funcție de care putem face observații
IMPACTUL Teoriei Relativității în viața de zi cu zi () [Corola-website/Journalistic/105125_a_106417]
-
derivă prin respectivul material. În mod obișnuit bucata de sârmă conductoare ar părea neutră din punct de vedere electric, fără să aibă o sarcină pozitivă sau negativă. Aceasta este o consecință a faptului că are un număr aproximativ egal de protoni (sarcină pozitivă) și electroni (sarcină negativă). Însă dacă punem lângă el un alt conductor prin care trece un curent continuu, cei doi conductori se vor atrage sau se vor respinge, în funcție de direcția în care se deplasează curentul electric. Presupunând că
IMPACTUL Teoriei Relativității în viața de zi cu zi () [Corola-website/Journalistic/105125_a_106417]
-
că ambele curente electrice se deplasează în aceeași direcție, electronii din primul conductor ar percepe electronii din al doilea conductor ca stând pe loc (cu condiția ca ambele fluxuri electrice să aibă aproximativ aceeași putere). Între timp, din perspectiva electronilor, protonii din ambii conductori ar părea a fi în mișcare. Din cauza contracției relativiste a lungimii, distanțele dintre ei ar părea mai mici, deci ar fi mai multă sarcină pozitivă pe unitatea de lungime a conductorului raportat la sarcina negativă. Cum sarcinile
IMPACTUL Teoriei Relativității în viața de zi cu zi () [Corola-website/Journalistic/105125_a_106417]
-
s-ar respinge. Dacă fluxurile electrice au direcții opuse, rezultatul este un efect de atragere pentru că, din punctul de vedere al primului conductor, electronii din celălalt conductor sunt mai "înghesuiți" unii în alții, generând o sarcină negativă netă. Între timp, protonii din primul conductor generează o sarcină pozitivă netă, iar sarcinile opuse se atrag. 3. Culoarea aurului Majoritatea metalelor sunt strălucitoare pentru că electronii atomilor care compun respectivele metale sar de la diferite niveluri de energie. Fotonii care lovesc suprafața acestor metale sunt
IMPACTUL Teoriei Relativității în viața de zi cu zi () [Corola-website/Journalistic/105125_a_106417]