322 matches
-
anii 1950. Printre aplicațiie cesiului non-radioactiv menționăm aplicațiile în celule fotovoltaice, în tuburi fotomultiplicatoare, în componentele optice ale spectrofotometrelor cu raze infraroșii, în cataliza unor reacții organice și în generatorul magnetohidrodinamic. Încă din 1967, Sistemul internațional de unități a utilizat cesiul pentru a crea etalonul secundă, definind secunda ca o perioadă de 9.192.631.770 cicluri ale radiației, ce corespund dezintegrării radioactive a atomului de cesiu-133. În urma celei de a 13-a ediție a General Conference on Weights and Measures
Cesiu () [Corola-website/Science/304474_a_305803]
-
a 13-a ediție a General Conference on Weights and Measures din 1967, secunda a fost denumită (definită) ca „durata a 9.192.631.770 cicluri a luminii cu microunde absorbită sau emisă de către tranzițiile hiperfine ale atomilor de cesiu-133”. Cesiul este un metal foarte moale (are cea mai mică duritate pe Scara Mohs dintre toate elementele, de 0,2), ductil, de culoare alb-argintie, ce prezintă o tentă argintiu-aurie în prezența oxigenului. Are un punct de topire de 28,4 °C
Cesiu () [Corola-website/Science/304474_a_305803]
-
alb-argintie, ce prezintă o tentă argintiu-aurie în prezența oxigenului. Are un punct de topire de 28,4 °C, devenind astfel unul dintre singurele metale lichide la temperatura camerei, iar mercurul este singurul metal cu tempeatura de topire mai mică decât cesiul. În plus, metalul are și cel mai redus punct de fierbere, după mercurul, dintre metalele, de 641 °C. Compușii săi au culoarea albastră în timpul arderii într-o flacără deschisă. Cesiul formează și aliaje cu alte metale alcaline și cu aurul
Cesiu () [Corola-website/Science/304474_a_305803]
-
este singurul metal cu tempeatura de topire mai mică decât cesiul. În plus, metalul are și cel mai redus punct de fierbere, după mercurul, dintre metalele, de 641 °C. Compușii săi au culoarea albastră în timpul arderii într-o flacără deschisă. Cesiul formează și aliaje cu alte metale alcaline și cu aurul și amalgamuri chimice cu mercurul. La temperaturi sub 650 °C, acesta formează aliaje cu cobaltul, fierul, molibdenul, nichelul, platina, tantalul și wolframul. Poate forma, totodată, și compuși intermetalici fotosensibili cu
Cesiu () [Corola-website/Science/304474_a_305803]
-
metale alcaline și cu aurul și amalgamuri chimice cu mercurul. La temperaturi sub 650 °C, acesta formează aliaje cu cobaltul, fierul, molibdenul, nichelul, platina, tantalul și wolframul. Poate forma, totodată, și compuși intermetalici fotosensibili cu stibiul, galiul, indiul și toriul. Cesiul se poate amesteca cu celălalte metale alcaline (excepție litiul), iar aliajul cu compoziția 41% cesiu, 47% potasiu și 12% sodiu are cel mai mic punct de topire dintre toate aliajele metalelor, de −78 °C. Au mai fost studiate și alte
Cesiu () [Corola-website/Science/304474_a_305803]
-
acesta formează aliaje cu cobaltul, fierul, molibdenul, nichelul, platina, tantalul și wolframul. Poate forma, totodată, și compuși intermetalici fotosensibili cu stibiul, galiul, indiul și toriul. Cesiul se poate amesteca cu celălalte metale alcaline (excepție litiul), iar aliajul cu compoziția 41% cesiu, 47% potasiu și 12% sodiu are cel mai mic punct de topire dintre toate aliajele metalelor, de −78 °C. Au mai fost studiate și alte amalgamuri: CsHg (ce este de culoare neagră și posedă luciu metalic) și CsHg (ce este
Cesiu () [Corola-website/Science/304474_a_305803]
-
cel mai mic punct de topire dintre toate aliajele metalelor, de −78 °C. Au mai fost studiate și alte amalgamuri: CsHg (ce este de culoare neagră și posedă luciu metalic) și CsHg (ce este galben și posedă tot luciu metalic). Cesiul metalic este foarte reactiv și foarte piroforic. În plus, se aprinde în mod spontan în aer și reacționează cu apa la temperaturi reduse, în urma reacției având loc explozii relativ periculoase. Reacția cu apa solidă poate avea loc la temperaturi mai
Cesiu () [Corola-website/Science/304474_a_305803]
-
ca de exemplu în uleiuri minerale. Mai poate fi păstrat și în atmosferele de gaze inerte, ca cea de argon, sau în fiole din sticlă de borsilicat sigilate cu vid. Când este păstrat în cantități mai mari de 100 grame, cesiul este sigilat în containere din oțel inoxidabil. Caracteristicile chimice ale cesiului sunt similare cu cele ale metalelor alcaline, dar mai degrabă, acestea se asemănă cu cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot
Cesiu () [Corola-website/Science/304474_a_305803]
-
în atmosferele de gaze inerte, ca cea de argon, sau în fiole din sticlă de borsilicat sigilate cu vid. Când este păstrat în cantități mai mari de 100 grame, cesiul este sigilat în containere din oțel inoxidabil. Caracteristicile chimice ale cesiului sunt similare cu cele ale metalelor alcaline, dar mai degrabă, acestea se asemănă cu cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot apărea mici diferențe între proprietățile chimice datorită masei atomice și a
Cesiu () [Corola-website/Science/304474_a_305803]
-
în cantități mai mari de 100 grame, cesiul este sigilat în containere din oțel inoxidabil. Caracteristicile chimice ale cesiului sunt similare cu cele ale metalelor alcaline, dar mai degrabă, acestea se asemănă cu cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot apărea mici diferențe între proprietățile chimice datorită masei atomice și a electropozitivității foarte mari. Cesiul este cel mai electropozitiv element cu izotopi stabili. Ionii de cesiu sunt, de asemenea, grei și mai puțin
Cesiu () [Corola-website/Science/304474_a_305803]
-
cele ale metalelor alcaline, dar mai degrabă, acestea se asemănă cu cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot apărea mici diferențe între proprietățile chimice datorită masei atomice și a electropozitivității foarte mari. Cesiul este cel mai electropozitiv element cu izotopi stabili. Ionii de cesiu sunt, de asemenea, grei și mai puțin duri decât al ionilor de metale alcaline. Cea mai mare parte a compușilor cesiului conțin cationul Cs ce se poate combina prin
Cesiu () [Corola-website/Science/304474_a_305803]
-
cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot apărea mici diferențe între proprietățile chimice datorită masei atomice și a electropozitivității foarte mari. Cesiul este cel mai electropozitiv element cu izotopi stabili. Ionii de cesiu sunt, de asemenea, grei și mai puțin duri decât al ionilor de metale alcaline. Cea mai mare parte a compușilor cesiului conțin cationul Cs ce se poate combina prin legături ionice cu un mare număr de anioni. O excepție notabilă
Cesiu () [Corola-website/Science/304474_a_305803]
-
datorită masei atomice și a electropozitivității foarte mari. Cesiul este cel mai electropozitiv element cu izotopi stabili. Ionii de cesiu sunt, de asemenea, grei și mai puțin duri decât al ionilor de metale alcaline. Cea mai mare parte a compușilor cesiului conțin cationul Cs ce se poate combina prin legături ionice cu un mare număr de anioni. O excepție notabilă este anionul de "cesiură" (Cs). Alte câteva excepții sunt suboxizii (vezi secțiunea oxizi). Sărurile ionului Cs sunt incolore, deși anionul în
Cesiu () [Corola-website/Science/304474_a_305803]
-
oxizi). Sărurile ionului Cs sunt incolore, deși anionul în sine este colorat. Majoritatea acestora sunt higroscopice, dar acest fenomen este mai puțin prezent decât în cazul sărurilor altor metale alcaline. Fosfatul, acetatul, carbonatul, compușii halogenici, oxidul, azotatul și sulfatul de cesiu sunt solubili în apă. Sărurile duble (adică cele formate din mai mulți cationi și anioni diferiți) sunt adesea greu solubile; însă, această insolubilitate poate avea și aplicații. De exemplu, datorită solubilității scăzute a sulfatului de cesiu și aluminiu, compusul este
Cesiu () [Corola-website/Science/304474_a_305803]
-
azotatul și sulfatul de cesiu sunt solubili în apă. Sărurile duble (adică cele formate din mai mulți cationi și anioni diferiți) sunt adesea greu solubile; însă, această insolubilitate poate avea și aplicații. De exemplu, datorită solubilității scăzute a sulfatului de cesiu și aluminiu, compusul este folosit la purificarea cesiului din minereuri. Sărurile duble cu stibiu (ca de exemplu, ), bismut, cadmiu, cupru, fier și plumb sunt, de asemenea, puțin solubile. Hidroxidul de cesiu (CsOH) este o bază foarte puternică și higroscopică. Compusul
Cesiu () [Corola-website/Science/304474_a_305803]
-
apă. Sărurile duble (adică cele formate din mai mulți cationi și anioni diferiți) sunt adesea greu solubile; însă, această insolubilitate poate avea și aplicații. De exemplu, datorită solubilității scăzute a sulfatului de cesiu și aluminiu, compusul este folosit la purificarea cesiului din minereuri. Sărurile duble cu stibiu (ca de exemplu, ), bismut, cadmiu, cupru, fier și plumb sunt, de asemenea, puțin solubile. Hidroxidul de cesiu (CsOH) este o bază foarte puternică și higroscopică. Compusul poate fi folosit la decaparea semiconductoarelor, cum sunt
Cesiu () [Corola-website/Science/304474_a_305803]
-
aplicații. De exemplu, datorită solubilității scăzute a sulfatului de cesiu și aluminiu, compusul este folosit la purificarea cesiului din minereuri. Sărurile duble cu stibiu (ca de exemplu, ), bismut, cadmiu, cupru, fier și plumb sunt, de asemenea, puțin solubile. Hidroxidul de cesiu (CsOH) este o bază foarte puternică și higroscopică. Compusul poate fi folosit la decaparea semiconductoarelor, cum sunt siliciul și germaniul. Hidroxidul de cesiu a fost considerat de chimiști ca „cea mai puternică bază”, fapt datorat atracției slabe dintre ionul Cs
Cesiu () [Corola-website/Science/304474_a_305803]
-
stibiu (ca de exemplu, ), bismut, cadmiu, cupru, fier și plumb sunt, de asemenea, puțin solubile. Hidroxidul de cesiu (CsOH) este o bază foarte puternică și higroscopică. Compusul poate fi folosit la decaparea semiconductoarelor, cum sunt siliciul și germaniul. Hidroxidul de cesiu a fost considerat de chimiști ca „cea mai puternică bază”, fapt datorat atracției slabe dintre ionul Cs foarte greu și OH mai ușor. CsOH este într-adevăr cea mai puternică bază Arrhenius, însă un număr de compuși care nu există
Cesiu () [Corola-website/Science/304474_a_305803]
-
ușor. CsOH este într-adevăr cea mai puternică bază Arrhenius, însă un număr de compuși care nu există în soluții apoase, precum amida de sodiu (NaNH) și n-butil-litiul (CHLi), sunt baze și mai puternice. Prin reacția unui amestec stoichiometric de cesiu și aur se formează compusul aurura de cesiu. Ca toți cationii metalelor, ionul Cs formează compuși complecși în soluțiile bazelor Lewis. Adesea, din cauza greutății sale, Cs adoptă numere de coordinare mai mari ca șase, acestea fiind tipice pentru cationii metalelor
Cesiu () [Corola-website/Science/304474_a_305803]
-
bază Arrhenius, însă un număr de compuși care nu există în soluții apoase, precum amida de sodiu (NaNH) și n-butil-litiul (CHLi), sunt baze și mai puternice. Prin reacția unui amestec stoichiometric de cesiu și aur se formează compusul aurura de cesiu. Ca toți cationii metalelor, ionul Cs formează compuși complecși în soluțiile bazelor Lewis. Adesea, din cauza greutății sale, Cs adoptă numere de coordinare mai mari ca șase, acestea fiind tipice pentru cationii metalelor alcaline ușoare. Această tendință este deja evidențiată în
Cesiu () [Corola-website/Science/304474_a_305803]
-
cationii metalelor, ionul Cs formează compuși complecși în soluțiile bazelor Lewis. Adesea, din cauza greutății sale, Cs adoptă numere de coordinare mai mari ca șase, acestea fiind tipice pentru cationii metalelor alcaline ușoare. Această tendință este deja evidențiată în clorura de cesiu (CsCl), unde numărul de coordinare este opt. Moliciunea și numărul de coordinare mare al ionului Cs sunt motive principale pentru separarea sa de alți cationi, putând fi folosit la separarea deșeurilor nucleare, unde Cs este separat de K ce nu
Cesiu () [Corola-website/Science/304474_a_305803]
-
coordinare este opt. Moliciunea și numărul de coordinare mare al ionului Cs sunt motive principale pentru separarea sa de alți cationi, putând fi folosit la separarea deșeurilor nucleare, unde Cs este separat de K ce nu este radioactiv. Clorura de cesiu (CsCl) cristalizează în sistemul cristalin cubic. Cunoscut și sub denumirea de „structura clorurii de cesiu” , acest model structural este compus dintr-o rețea cubică cu doi atomi la bază și cu numărul de coordinare opt; atomii de clor sunt dispuși
Cesiu () [Corola-website/Science/304474_a_305803]
-
pentru separarea sa de alți cationi, putând fi folosit la separarea deșeurilor nucleare, unde Cs este separat de K ce nu este radioactiv. Clorura de cesiu (CsCl) cristalizează în sistemul cristalin cubic. Cunoscut și sub denumirea de „structura clorurii de cesiu” , acest model structural este compus dintr-o rețea cubică cu doi atomi la bază și cu numărul de coordinare opt; atomii de clor sunt dispuși deasupra rețelei, la marginea cubului, în timp ce atomii de cesiu stau dispuși în zona centrală a
Cesiu () [Corola-website/Science/304474_a_305803]
-
sub denumirea de „structura clorurii de cesiu” , acest model structural este compus dintr-o rețea cubică cu doi atomi la bază și cu numărul de coordinare opt; atomii de clor sunt dispuși deasupra rețelei, la marginea cubului, în timp ce atomii de cesiu stau dispuși în zona centrală a cristalului. Acest model este comun și pentru CsBr și CsI, dar și pentru mulți alți compuși ce nu conțin cesiu. În contrast, mulți alți compuși halogenați ale metalelor alcaline adoptă structura cubică a sării
Cesiu () [Corola-website/Science/304474_a_305803]
-
opt; atomii de clor sunt dispuși deasupra rețelei, la marginea cubului, în timp ce atomii de cesiu stau dispuși în zona centrală a cristalului. Acest model este comun și pentru CsBr și CsI, dar și pentru mulți alți compuși ce nu conțin cesiu. În contrast, mulți alți compuși halogenați ale metalelor alcaline adoptă structura cubică a sării de bucătărie (NaCl). Totuși, structura clorurii de cesiu este cea preferată de cesiu, deoarece Cs are o rază atomică 174 pm și Cl de 181 pm
Cesiu () [Corola-website/Science/304474_a_305803]