1,634 matches
-
energia medie a oscilatorilor are o abatere ΔU față de valoarea ei de echilibru, atunci are loc un proces ireversibil de apropiere de echilibru, în timpul căruia entropia totala "S" a sistemului "oscilatori + radiație" crește cu rata:<br>formula 3 unde S este entropia ("numai" a) sistemului de rezonatori. Functia S(U,N,ν) este aici necunoscută; pentru ca apropierea de echilibru să fie legată de o creștere a entropiei este însă suficient ca dS/ dU<0. După Planck, cele două formule (1) și (2
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
entropia totala "S" a sistemului "oscilatori + radiație" crește cu rata:<br>formula 3 unde S este entropia ("numai" a) sistemului de rezonatori. Functia S(U,N,ν) este aici necunoscută; pentru ca apropierea de echilibru să fie legată de o creștere a entropiei este însă suficient ca dS/ dU<0. După Planck, cele două formule (1) și (2) reprezintă tot ceea ce poate spune fizica clasică despre echilibrul materie - radiație. În acest articol sunt schițate argumentele lui Max Planck pentru formulele (1) și (2
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
situație apropiată de echilibru, dar diferită de acesta: oscilatorul are energia U+ΔU și este iradiat cu intensitatea I: energia lui va scade până la echilibru emițând radiație, conform ecuației de mai sus. Este un proces ireversibil și ne așteptăm ca entropia totală a sistemului "oscilator + radiație" să crească. În articolul Entropia radiației electromagnetice arătăm că unui fascicol de raze (incoerente) cu intensitatea I și frecvența ν i se poate asocia un curent de entropie L(I) prin relația <br>formula 55, unde
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
energia U+ΔU și este iradiat cu intensitatea I: energia lui va scade până la echilibru emițând radiație, conform ecuației de mai sus. Este un proces ireversibil și ne așteptăm ca entropia totală a sistemului "oscilator + radiație" să crească. În articolul Entropia radiației electromagnetice arătăm că unui fascicol de raze (incoerente) cu intensitatea I și frecvența ν i se poate asocia un curent de entropie L(I) prin relația <br>formula 55, unde T este temperatura corpului negru care emite radiația cu intensitatea
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
un proces ireversibil și ne așteptăm ca entropia totală a sistemului "oscilator + radiație" să crească. În articolul Entropia radiației electromagnetice arătăm că unui fascicol de raze (incoerente) cu intensitatea I și frecvența ν i se poate asocia un curent de entropie L(I) prin relația <br>formula 55, unde T este temperatura corpului negru care emite radiația cu intensitatea I. Entropia S(U) a oscilatorului - ca eșantion al unui colectiv de N oscilatori independenți - o privim ca necunoscută (și pentru că nu precizăm
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
electromagnetice arătăm că unui fascicol de raze (incoerente) cu intensitatea I și frecvența ν i se poate asocia un curent de entropie L(I) prin relația <br>formula 55, unde T este temperatura corpului negru care emite radiația cu intensitatea I. Entropia S(U) a oscilatorului - ca eșantion al unui colectiv de N oscilatori independenți - o privim ca necunoscută (și pentru că nu precizăm nici un mecanism care ar putea-o modifica în absența câmpului electromagnetic). Evaluăm acum variația entropiei totale într-un interval
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
radiația cu intensitatea I. Entropia S(U) a oscilatorului - ca eșantion al unui colectiv de N oscilatori independenți - o privim ca necunoscută (și pentru că nu precizăm nici un mecanism care ar putea-o modifica în absența câmpului electromagnetic). Evaluăm acum variația entropiei totale într-un interval de timp dt în care oscilatorul absoarbe radiație cu intensitatea I(ω),reemite radiație si entropia sa scade ca urmare a faptului că energia lui U scade. Absorbția radiației cu polarizarea corectă cu frecvența într-un
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
ca necunoscută (și pentru că nu precizăm nici un mecanism care ar putea-o modifica în absența câmpului electromagnetic). Evaluăm acum variația entropiei totale într-un interval de timp dt în care oscilatorul absoarbe radiație cu intensitatea I(ω),reemite radiație si entropia sa scade ca urmare a faptului că energia lui U scade. Absorbția radiației cu polarizarea corectă cu frecvența într-un interval dv împrejurul lui ν în intervalul de timp dt este însoțită de o scădere a entropiei câmpului egală cu
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
reemite radiație si entropia sa scade ca urmare a faptului că energia lui U scade. Absorbția radiației cu polarizarea corectă cu frecvența într-un interval dv împrejurul lui ν în intervalul de timp dt este însoțită de o scădere a entropiei câmpului egală cu:<br>formula 56 cu L definit mai sus. Am folosit aici aceeași suprafață de interacție a oscilatorului cu radiația "σ = πe/mcΔν) ca la sfârșitul paragrafului precedent. O parte din radiația incidentă nu este absorbită iar oscilatorul emite
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
sus. Am folosit aici aceeași suprafață de interacție a oscilatorului cu radiația "σ = πe/mcΔν) ca la sfârșitul paragrafului precedent. O parte din radiația incidentă nu este absorbită iar oscilatorul emite la rândul său radiație, corespunzător energiei sale „deplasate” U: entropia câmpului crește cu:<br>formula 57 Deci, într-un interval de timp dt, ținând seama că energia oscilatorului a variat, entropia totală S se schimbă cu:<br>formula 58 Derivata dS/dU (U=U+ΔU) poate fi scrisă, pentru ΔU suficient de
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
O parte din radiația incidentă nu este absorbită iar oscilatorul emite la rândul său radiație, corespunzător energiei sale „deplasate” U: entropia câmpului crește cu:<br>formula 57 Deci, într-un interval de timp dt, ținând seama că energia oscilatorului a variat, entropia totală S se schimbă cu:<br>formula 58 Derivata dS/dU (U=U+ΔU) poate fi scrisă, pentru ΔU suficient de mic:<br>formula 59 iar : <br>formula 60unde am folosit faptul ca U este energia de echilibru, și am presupus că radiația
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
radiația externa I(ν) este nepertubată. Pentru integrandul din dS scriem o dezvoltare în serie analogă, împrejurul lui U:<br>formula 61<br>formula 62 Evaluăm în dS integrala după dΩ și, folosind (7.2),(7.6) obținem pentru variația totală de entropie în timpul dt:<br>formula 63<br>formula 64 unde am folosit :<br>formula 65Această variație poate fi numai pozitivă; cum ΔU are un semn arbitrar, deducem că S(U) nu este independent de L(I), ci:<br>formula 66unde U și I sunt legate
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
formula 67Derivând de două ori:<br>formula 68Cu aceasta, obținem a doua relație „fundamentală” a lui Planck:<br>formula 69sau, ținând seama de expresia lui ΔU:<br>formula 70Din (7.12) sau (7.13) (cantitățile dU,ΔU au semne contrare, vezi (7.6)) că entropia „misterioasă” a oscilatorului trebuie să satisfacă:<br>formula 71 dacă cerem ca entropia să crească atunci când echilibrul se restabilește. Max Planck a sperat că cerința de maximum al entropiei la echilibrul între materie și radiație îi va permite să specifice în
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
a lui Planck:<br>formula 69sau, ținând seama de expresia lui ΔU:<br>formula 70Din (7.12) sau (7.13) (cantitățile dU,ΔU au semne contrare, vezi (7.6)) că entropia „misterioasă” a oscilatorului trebuie să satisfacă:<br>formula 71 dacă cerem ca entropia să crească atunci când echilibrul se restabilește. Max Planck a sperat că cerința de maximum al entropiei la echilibrul între materie și radiație îi va permite să specifice în mai mult detaliu funcția S(U) - și prin ea, funcția L(I
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
7.13) (cantitățile dU,ΔU au semne contrare, vezi (7.6)) că entropia „misterioasă” a oscilatorului trebuie să satisfacă:<br>formula 71 dacă cerem ca entropia să crească atunci când echilibrul se restabilește. Max Planck a sperat că cerința de maximum al entropiei la echilibrul între materie și radiație îi va permite să specifice în mai mult detaliu funcția S(U) - și prin ea, funcția L(I) și astfel distribuția după frecvență a energiei în radiația corpului negru. Expresia corectă a lui S
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
obținută numai prin comparație directă cu experiența (vezi Formula lui Planck). Scopul articolului este să prezinte în oarecare detaliu considerațiile fizice care au pregătit „descoperirea” cuantelor energetice. Este remarcabil rolul pe care l-a jucat aici termodinamica prin conceptul de entropie. Privind lucrurile de aproape, și realizând neclaritatea care domnea atunci (ale cărei urme există și în prezent) în interpretarea statistică a termodinamicii, se poate aprecia atât modul „aventuros” în care fizica înaintează, cât și drumul lung de calcule și aproximații
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
fizica înaintează, cât și drumul lung de calcule și aproximații care duce de la ecuațiile lui Maxwell la formule care să poată fi comparate cu experiența. Este credința remarcabilă a lui Planck că „simplitatea naturii” se ascunde în funcția care descrie entropia oscilatorilor (entropia calculată din formula lui Wien l-a întărit in aceasta), cuplată probabil cu neîncrederea în dezvoltările contemporane ale mecanicii statistice (care ofereau o expresie pentru entropia unui sistem de oscilatori clasici în „slabă” interacție unul cu celălalt, fără
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
cât și drumul lung de calcule și aproximații care duce de la ecuațiile lui Maxwell la formule care să poată fi comparate cu experiența. Este credința remarcabilă a lui Planck că „simplitatea naturii” se ascunde în funcția care descrie entropia oscilatorilor (entropia calculată din formula lui Wien l-a întărit in aceasta), cuplată probabil cu neîncrederea în dezvoltările contemporane ale mecanicii statistice (care ofereau o expresie pentru entropia unui sistem de oscilatori clasici în „slabă” interacție unul cu celălalt, fără un mecanism
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
a lui Planck că „simplitatea naturii” se ascunde în funcția care descrie entropia oscilatorilor (entropia calculată din formula lui Wien l-a întărit in aceasta), cuplată probabil cu neîncrederea în dezvoltările contemporane ale mecanicii statistice (care ofereau o expresie pentru entropia unui sistem de oscilatori clasici în „slabă” interacție unul cu celălalt, fără un mecanism detaliat de interacție), ceea ce a dus la interpretarea lui nemaiintâlnită a curbelor experimentale ale radiației corpului negru. În orice caz, reticența contemporanilor (și a lui proprie
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
a dus la interpretarea lui nemaiintâlnită a curbelor experimentale ale radiației corpului negru. În orice caz, reticența contemporanilor (și a lui proprie) în acceptarea "ad litteram" a acestei interpretări este de ințeles! Este o dovadă a consistenței acestei credințe că entropia totală a oscilatorilor și radiației crește la restabilirea echilibrului între ele, numai daca condiția relativ simplă (7.14) este respectată. Această condiție este cunoscută în termodinamică pentru sisteme simple: entropia este o funcție concavă de energie , dar pentru sistemul izolat
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
de ințeles! Este o dovadă a consistenței acestei credințe că entropia totală a oscilatorilor și radiației crește la restabilirea echilibrului între ele, numai daca condiția relativ simplă (7.14) este respectată. Această condiție este cunoscută în termodinamică pentru sisteme simple: entropia este o funcție concavă de energie , dar pentru sistemul izolat de oscilatori, nu este ușor de interpretat. Cele două ecuații (1a) și (7.14) din ultimul paragraf sunt acele consecințe ale fizicii clasice în care trebuie avut încredere pentru a
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
este evident, deoarece atât ecuațiile lui Maxwell pentru câmpul electromagnetic, cât și cele ale mecanicii clasice admit, pentru fiecare soluție posibila și una a cărei evoluție în timp este exact opusă. Din cauza aceasta, apare întrebarea cum de putem demonstra că entropia crește când se restabilește echilibrul între radiație și materie, atunci când ecuațiile de evoluție microscopică nu disting între cele două sensuri de curgere a timpului. Problema era în perioada 1896-1900 foarte discutată, deoarece creșterea naturală de entropie a unui gaz de
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
de putem demonstra că entropia crește când se restabilește echilibrul între radiație și materie, atunci când ecuațiile de evoluție microscopică nu disting între cele două sensuri de curgere a timpului. Problema era în perioada 1896-1900 foarte discutată, deoarece creșterea naturală de entropie a unui gaz de puncte materiale în procesul de apropiere de echilibru este în contradicție cu reversibilitatea în timp a mecanicii clasice. Aceste dificultăți cu privire la ireversibilitatea procesului de radiație au făcut obiectul unor memorii ale lui L.Boltzmann critice cu privire la
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
echilibru este în contradicție cu reversibilitatea în timp a mecanicii clasice. Aceste dificultăți cu privire la ireversibilitatea procesului de radiație au făcut obiectul unor memorii ale lui L.Boltzmann critice cu privire la formulările lui Planck. Evident, posibilitatea „demonstrației” că, la apropierea de echilibru, entropia crește, este datorită ipotezei suplimentare a luminii naturale, care are analogii cu ipotezele de uniformitate folosite de Boltzmann pentru demonstrația lui celebră ("teorema H") că entropia este o funcție crescătoare de timp. Problema interacției oscilatorului armonic incărcat cu câmpul electromagnetic
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
Boltzmann critice cu privire la formulările lui Planck. Evident, posibilitatea „demonstrației” că, la apropierea de echilibru, entropia crește, este datorită ipotezei suplimentare a luminii naturale, care are analogii cu ipotezele de uniformitate folosite de Boltzmann pentru demonstrația lui celebră ("teorema H") că entropia este o funcție crescătoare de timp. Problema interacției oscilatorului armonic incărcat cu câmpul electromagnetic este tratată în manuale, însă în alte contexte. Implicit ea apare în discuția difuziei undelor electromagnetice la trecerea prin medii materiale . Un tratament cuprinzător, cu un
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]