1,631 matches
-
geodezice. Pe o sferă geodezicele sunt cercuri mari; alte concepte geometrice sunt definite ca în geometria plană, dar cu liniile dreapte înlocuite prin cercurile mari. Astfel, în geometria sferică unghiurile sunt definite între două cercuri mari, rezultând că în trigonometria sferică unghiurile diferă de cele din trigonometria plană în multe privințe; de exemplu, suma unghiurilor interioare ale triunghiurilor sferice este mai mare de 180°. Geometria sferică este cea mai simplă formă de geometrie eliptică, în care o linie nu are paralele
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
cu liniile dreapte înlocuite prin cercurile mari. Astfel, în geometria sferică unghiurile sunt definite între două cercuri mari, rezultând că în trigonometria sferică unghiurile diferă de cele din trigonometria plană în multe privințe; de exemplu, suma unghiurilor interioare ale triunghiurilor sferice este mai mare de 180°. Geometria sferică este cea mai simplă formă de geometrie eliptică, în care o linie nu are paralele față de un punct dat, contrastând cu geometria euclidiană, în care o linie are o paralelă față de un punct
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
Astfel, în geometria sferică unghiurile sunt definite între două cercuri mari, rezultând că în trigonometria sferică unghiurile diferă de cele din trigonometria plană în multe privințe; de exemplu, suma unghiurilor interioare ale triunghiurilor sferice este mai mare de 180°. Geometria sferică este cea mai simplă formă de geometrie eliptică, în care o linie nu are paralele față de un punct dat, contrastând cu geometria euclidiană, în care o linie are o paralelă față de un punct dat și geometria hiperbolică, în care o
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
cu geometria euclidiană, în care o linie are o paralelă față de un punct dat și geometria hiperbolică, în care o linie are două paralele și un număr infinit de ultraparalele față de un punct dat. O importantă geometrie legată de cea sferică este aceea a planului proiectiv real, fiind obținut prin identificarea punctelor diametral opuse pe o sferă. Acesta este un alt tip de geometrie eliptică. Local, planul proiectiv are toate proprietățile geometriei sferice, dar are proprietăți globale diferite. În particular, este
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
punct dat. O importantă geometrie legată de cea sferică este aceea a planului proiectiv real, fiind obținut prin identificarea punctelor diametral opuse pe o sferă. Acesta este un alt tip de geometrie eliptică. Local, planul proiectiv are toate proprietățile geometriei sferice, dar are proprietăți globale diferite. În particular, este neorientabil sau cu o singură suprafață, gen inelul lui Möbius. Conceptele geometriei sferice pot fi aplicate și sferelor alungite, cu toate că trebuiesc făcute modificări minore anumitor formule. Există și geometrie sferică multidimensională; vezi
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
opuse pe o sferă. Acesta este un alt tip de geometrie eliptică. Local, planul proiectiv are toate proprietățile geometriei sferice, dar are proprietăți globale diferite. În particular, este neorientabil sau cu o singură suprafață, gen inelul lui Möbius. Conceptele geometriei sferice pot fi aplicate și sferelor alungite, cu toate că trebuiesc făcute modificări minore anumitor formule. Există și geometrie sferică multidimensională; vezi geometria eliptică. Geometria sferică a fost studiată din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
proprietățile geometriei sferice, dar are proprietăți globale diferite. În particular, este neorientabil sau cu o singură suprafață, gen inelul lui Möbius. Conceptele geometriei sferice pot fi aplicate și sferelor alungite, cu toate că trebuiesc făcute modificări minore anumitor formule. Există și geometrie sferică multidimensională; vezi geometria eliptică. Geometria sferică a fost studiată din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte de trigonometrie sferică numită Sphaerica dezvoltând teorema lui Menelaus. Cartea arcelor necunoscute pe o sferă scrisă de
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
globale diferite. În particular, este neorientabil sau cu o singură suprafață, gen inelul lui Möbius. Conceptele geometriei sferice pot fi aplicate și sferelor alungite, cu toate că trebuiesc făcute modificări minore anumitor formule. Există și geometrie sferică multidimensională; vezi geometria eliptică. Geometria sferică a fost studiată din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte de trigonometrie sferică numită Sphaerica dezvoltând teorema lui Menelaus. Cartea arcelor necunoscute pe o sferă scrisă de matematicianul Islamic Al-Jayyani este considerată a
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
aplicate și sferelor alungite, cu toate că trebuiesc făcute modificări minore anumitor formule. Există și geometrie sferică multidimensională; vezi geometria eliptică. Geometria sferică a fost studiată din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte de trigonometrie sferică numită Sphaerica dezvoltând teorema lui Menelaus. Cartea arcelor necunoscute pe o sferă scrisă de matematicianul Islamic Al-Jayyani este considerată a fi primul tratat de geometrie sferică. Cartea conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluții ale triunghiului sferic prin intermediul
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
de matematicienii greci precum Menelaus din Alexandria, care a scris o carte de trigonometrie sferică numită Sphaerica dezvoltând teorema lui Menelaus. Cartea arcelor necunoscute pe o sferă scrisă de matematicianul Islamic Al-Jayyani este considerată a fi primul tratat de geometrie sferică. Cartea conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluții ale triunghiului sferic prin intermediul triunghiului polar. Cartea "De Triangulis omnimodis" a lui Regiomontanus, scrisă în anul 1464, este prima lucrare de trigonometrie pură din Europa. Girolamo Cardano nota un secol
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
trigonometrie sferică numită Sphaerica dezvoltând teorema lui Menelaus. Cartea arcelor necunoscute pe o sferă scrisă de matematicianul Islamic Al-Jayyani este considerată a fi primul tratat de geometrie sferică. Cartea conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluții ale triunghiului sferic prin intermediul triunghiului polar. Cartea "De Triangulis omnimodis" a lui Regiomontanus, scrisă în anul 1464, este prima lucrare de trigonometrie pură din Europa. Girolamo Cardano nota un secol mai târziu că multe din problemele de trigonometrie sferică au fost luate din
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
și soluții ale triunghiului sferic prin intermediul triunghiului polar. Cartea "De Triangulis omnimodis" a lui Regiomontanus, scrisă în anul 1464, este prima lucrare de trigonometrie pură din Europa. Girolamo Cardano nota un secol mai târziu că multe din problemele de trigonometrie sferică au fost luate din lucrările omului de știință Jabir ibn Aflah din Spania Islamică a secolului al XII-lea.
Geometrie sferică () [Corola-website/Science/320042_a_321371]
-
Trigonometria sferică este o ramură a geometriei sferice care tratează despre poligoane pe sferă (în special triunghiuri) și relațiile dintre laturile și unghiurile lor. Acestea sunt de mare importanță în calculele din astronomie și suprafața Pământului, precum și în navigația orbitală și spațială
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
Trigonometria sferică este o ramură a geometriei sferice care tratează despre poligoane pe sferă (în special triunghiuri) și relațiile dintre laturile și unghiurile lor. Acestea sunt de mare importanță în calculele din astronomie și suprafața Pământului, precum și în navigația orbitală și spațială. Triunghurile sferice au fost studiate din
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
o ramură a geometriei sferice care tratează despre poligoane pe sferă (în special triunghiuri) și relațiile dintre laturile și unghiurile lor. Acestea sunt de mare importanță în calculele din astronomie și suprafața Pământului, precum și în navigația orbitală și spațială. Triunghurile sferice au fost studiate din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte despre triunghiurile sferice numită Sphaerica dezvoltând teorema lui Menelaus. E.S. Kennedy a precizat că, în pricipiu, în antichitate a fost posibil calculul mărimilor
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
lor. Acestea sunt de mare importanță în calculele din astronomie și suprafața Pământului, precum și în navigația orbitală și spațială. Triunghurile sferice au fost studiate din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte despre triunghiurile sferice numită Sphaerica dezvoltând teorema lui Menelaus. E.S. Kennedy a precizat că, în pricipiu, în antichitate a fost posibil calculul mărimilor din figurile sferice, prin folosirea tabelelor corzilor și aplicarea teoremei lui Menelaus, dar în practică aplicarea teoremei la problemele sferice
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
studiate din antichitate de matematicienii greci precum Menelaus din Alexandria, care a scris o carte despre triunghiurile sferice numită Sphaerica dezvoltând teorema lui Menelaus. E.S. Kennedy a precizat că, în pricipiu, în antichitate a fost posibil calculul mărimilor din figurile sferice, prin folosirea tabelelor corzilor și aplicarea teoremei lui Menelaus, dar în practică aplicarea teoremei la problemele sferice era foarte dificilă. Un progres mai însemnat s-a produs în lumea Islamică. În scopul respectării zilelor sfinte din calendarul Islamic în care
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
sferice numită Sphaerica dezvoltând teorema lui Menelaus. E.S. Kennedy a precizat că, în pricipiu, în antichitate a fost posibil calculul mărimilor din figurile sferice, prin folosirea tabelelor corzilor și aplicarea teoremei lui Menelaus, dar în practică aplicarea teoremei la problemele sferice era foarte dificilă. Un progres mai însemnat s-a produs în lumea Islamică. În scopul respectării zilelor sfinte din calendarul Islamic în care cronometrările erau determinate de fazele Lunii, astronomii au folosit inițial metoda lui Menelaus pentru a calcula locul
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
De exemplu, pentru a afla timpul în funcție de înălțimea Soarelui, se cerea repetarea de mai multe ori a teoremei lui Menelaus. Deci, pentru astronomii Islamici medievali a fost o adevărată provocare de a găsi o metodă simplă de revolvare a triunghiurilor sferice. La începutul secolului al 9-lea, Muhammad ibn Mūsă al-Khwărizmī a fost un pionier în trigonometria sferică, scriind un tratat pe această temă. În secolul al 10-lea, Abū al-Wafă' al-Būzjănī a stabilit formula de adunarea a unghiurilor, adică sin
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
teoremei lui Menelaus. Deci, pentru astronomii Islamici medievali a fost o adevărată provocare de a găsi o metodă simplă de revolvare a triunghiurilor sferice. La începutul secolului al 9-lea, Muhammad ibn Mūsă al-Khwărizmī a fost un pionier în trigonometria sferică, scriind un tratat pe această temă. În secolul al 10-lea, Abū al-Wafă' al-Būzjănī a stabilit formula de adunarea a unghiurilor, adică sin(a + b), precum și formula sinusului pentru trigonometrie sferică: În care a, b și c sunt unghiurile de la
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
ibn Mūsă al-Khwărizmī a fost un pionier în trigonometria sferică, scriind un tratat pe această temă. În secolul al 10-lea, Abū al-Wafă' al-Būzjănī a stabilit formula de adunarea a unghiurilor, adică sin(a + b), precum și formula sinusului pentru trigonometrie sferică: În care a, b și c sunt unghiurile de la centrul sferei care subîntind cele trei laturi ale triunghiului, iar α, β, and γ sunt unghiurile dintre laturi, unghiul α fiind opusul laturii subîntinse de unghiul a, β fiind opusul laturii
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
subîntinse de unghiul a, β fiind opusul laturii subîntinse de unghiul b, iar γ fiind opusul laturii subîntinse de unghiul c. Al-Jayyani (989-1079), un matematician arab din Peninsula Iberică, a scris ceea ce unii consideră a fi primul tratat de trigonometrie sferică intitulat "Cartea arcelor necunoscute ale unei sfere","circa" 1060, în care trigonometria sferică a fost publicată într-o formă modernă. Cartea lui Al-Jayyani mai conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluția unui triunghi sferic prin intermediul triunghiului polar. Mai
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
γ fiind opusul laturii subîntinse de unghiul c. Al-Jayyani (989-1079), un matematician arab din Peninsula Iberică, a scris ceea ce unii consideră a fi primul tratat de trigonometrie sferică intitulat "Cartea arcelor necunoscute ale unei sfere","circa" 1060, în care trigonometria sferică a fost publicată într-o formă modernă. Cartea lui Al-Jayyani mai conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluția unui triunghi sferic prin intermediul triunghiului polar. Mai târziu, acest tratat a avut "o puternică influență asupra matematicii europene", iar "definiția
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
primul tratat de trigonometrie sferică intitulat "Cartea arcelor necunoscute ale unei sfere","circa" 1060, în care trigonometria sferică a fost publicată într-o formă modernă. Cartea lui Al-Jayyani mai conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluția unui triunghi sferic prin intermediul triunghiului polar. Mai târziu, acest tratat a avut "o puternică influență asupra matematicii europene", iar "definiția raportului ca număr" și "metoda sa de rezolvare a triunghiurilor sferice având toate laturile necunoscute" probabil că l-au influențat și pe Regiomontanus
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
mai conține formule ale triunghiurilor dreptunghice, teorema sinusului și soluția unui triunghi sferic prin intermediul triunghiului polar. Mai târziu, acest tratat a avut "o puternică influență asupra matematicii europene", iar "definiția raportului ca număr" și "metoda sa de rezolvare a triunghiurilor sferice având toate laturile necunoscute" probabil că l-au influențat și pe Regiomontanus. În secolul al 13-lea, matematicianul iranian Nasīr al-Dīn al-Tūsī a fost primul care a tratat trigonometria ca o disciplină matematică independentă de astronomie, iar mai apoi a
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]