2,185 matches
-
eficient, reacționează cu oxigenul pentru a produce bioxid de carbon și vapori de apă, ar fi putut avea o concentrație mult mai mare, cu o rată de amestec de 10 (100 părți per milion volumetric). În urma unui studiu geologic al izotopilor de sulf din 2009, un grup de cercetători, printre care și Yuichiro Ueno de la Universitatea Tokyo a propus prezența oxisulfurii de carbon (OCS) în atmosfera arheozoică. Oxisulfura de carbon este un gaz de seră eficient care ar fi putut contribui
Paradoxul Soarelui slab timpuriu () [Corola-website/Science/334531_a_335860]
-
Tokyo a propus prezența oxisulfurii de carbon (OCS) în atmosfera arheozoică. Oxisulfura de carbon este un gaz de seră eficient care ar fi putut contribui suplimentar la efectul de seră pentru a preveni înghețul apei la suprafeța terestră. În urma analizei izotopilor de azot și argon în incluziuni fluide încastrate în quartz hidrotermal de acum 3,5 miliarde de ani, o lucrare științifică din 2013 a concluzionat faptul că "„diazotul nu a jucat un rol important în bilanțul termic al Pământului timpuriu
Paradoxul Soarelui slab timpuriu () [Corola-website/Science/334531_a_335860]
-
nucleelor de condensație de sorginte biologică pentru nori”. Aceasta ar fi dus la un nivel mai mare de energie solară absorbită, care ar fi putut compensa nivelul scăzut de producție solară. În trecut, căldura geotermală rezultată din dezintegrări radioactive al izotopilor potasiu-40, uraniu-235 și uraniu-238 era mult mai mare ca în prezent. Proporția izotopică dintre U-238 și U-235 era crescută în favoarea U-235, aproximativ echivalent cu uraniul slab îmbogățit din prezent. Prin urmare, zăcăminte de uraniu natural din acea perioadă ar fi
Paradoxul Soarelui slab timpuriu () [Corola-website/Science/334531_a_335860]
-
este interzis acesteia să scape, dar conform cu principiile mecanicii cuantice, recent descoperite la vremea aceea, exista o probabilitate mică (dar diferită de zero) de "tunelare" prin barieră și de apariție pe cealaltă parte, scăpând astfel de nucleu. Americiu-241 este un izotop folosit în detectoarele de fum. Particulele alfa ionizează aerul dintre armăturile unui condensator, lăsând astfel să treacă un mic curent continuu care poate fi ușor întrerupt de particulele de fum. Dezintegrarea alfa poate furniza o sursă sigură de energie pentru
Dezintegrare alfa () [Corola-website/Science/310877_a_312206]
-
că ea poate fi amorsată și controlată pe calea reacției în lanț: neutroni liberi eliberați de fiecare eveniment de fisiune pot declanșa în continuare alte evenimente care, la rândul lor eliberează mai mulți neutroni și pot determina mai multe fisiuni. Izotopii chimici care pot să susțină o reacție de fisiune în lanț se numesc combustibili nucleari și se spune că sunt fisili. Cel mai comun combustibil nucleare este U (izotopul uraniului cu masa atomică 235) și Pu (izotopul plutoniului cu masa
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
lor eliberează mai mulți neutroni și pot determina mai multe fisiuni. Izotopii chimici care pot să susțină o reacție de fisiune în lanț se numesc combustibili nucleari și se spune că sunt fisili. Cel mai comun combustibil nucleare este U (izotopul uraniului cu masa atomică 235) și Pu (izotopul plutoniului cu masa atomică 239). Acești combustibili se sparg în elemente chimice (produși de fisiune) cu mase atomice apropiate de 100. Majoritatea combustibililor nucleari suferă fisiuni spontane extrem de rar, dezintegrându-se în
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
mai multe fisiuni. Izotopii chimici care pot să susțină o reacție de fisiune în lanț se numesc combustibili nucleari și se spune că sunt fisili. Cel mai comun combustibil nucleare este U (izotopul uraniului cu masa atomică 235) și Pu (izotopul plutoniului cu masa atomică 239). Acești combustibili se sparg în elemente chimice (produși de fisiune) cu mase atomice apropiate de 100. Majoritatea combustibililor nucleari suferă fisiuni spontane extrem de rar, dezintegrându-se în principal prin reacții alfa/beta timp de milenii
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
de altele cu viteză foarte mare. În evenimentele de fisiune nucleară, nucleele se pot sparge în orice combinație de nuclee mai ușoare, dar cel mai comun eveniment este spargerea în nuclee de mase aproximativ egale, în jur de 120; funcție de izotopi și proces, cel mai comun eveniment este fisiune asimetrică în care un nucleu rezultat are o masă de aproximativ 90 - 100 uam (unități atomice de masă) și celălalt nucleu de aproximativ 130 - 140 uam. Deoarece forțele nucleare tari acționează pe
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
compune cu forța de repulsie proton-proton. Produșii de fisiune au, în medie, aproximativ același raport de neutroni și protoni ca și nucleul „părinte” și de aceea sunt în mod normal instabile (deoarece au în mod proporțional prea mulți neutroni în comparație cu izotopii stabili de mase similare). Aceasta este cauza fundamentală a problemei deșeurile înalt radioactive din reactoarele nucleare. Produșii de fisiune tind să fie emițători beta, eliberând electroni rapizi în vederea conservării sarcinii electrice în urma transformării neutronilor excedentari în protoni, în interiorul nucleului produsului
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
de stocare până la dezintegrarea lor în produși stabili neradioactivi. Multe elemente grele, cum ar fi uraniu, toriu și plutoniu, suferă ambele tipuri de fisiuni: fisiunea spontană, ca o formă a dezintegrării radioactive și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
fi uraniu, toriu și plutoniu, suferă ambele tipuri de fisiuni: fisiunea spontană, ca o formă a dezintegrării radioactive și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină o reacție în lanț și pot
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină o reacție în lanț și pot fi obținuți în cantități destul de mari pentru a fi utilizați. Toți izotopii fisionabili și fisili suferă și un
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină o reacție în lanț și pot fi obținuți în cantități destul de mari pentru a fi utilizați. Toți izotopii fisionabili și fisili suferă și un număr mic de fisiuni spontane care eliberează un număr mic de neutroni liberi (rapizi) în interiorul eșantionului de combustibil nuclear. Neutronii emiși rapid din combustibil devin neutroni liberi, cu un timp de înjumătățire de aproape
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
dar dacă sunt mai mulți neutroni sau cel puțin masa critică, atunci numărul neutronilor este controlat mai degrabă de fizica reacției în lanț. Valoarea masei critice a unui combustibil nuclear depinde puternic de geometrie și materialele ambiante (înconjurătoare). Nu toți izotopii fisionabili pot susține o reacție în lanț. De exemplu, U, cel mai abundent al uraniului, este fisionabil dar nu fisil: el suferă fisiuni induse când este lovit de un neutron energetic cu o energie cinetică de peste 1 MeV . Dar prea
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
un neutron energetic cu o energie cinetică de peste 1 MeV . Dar prea puțini neutroni produși de fisiunea U sunt suficient de energetici pentru a induce o următoare fisiune în U, astfel încât nu este posibilă o reacție în lanț pentru acest izotop. În schimb, bombardând U cu neutroni termici există posibilitatea ca aceștia să fie absorbiți, obținându-se U, izotop care se dezintegrează prin emisie beta către Pu; acest proces este folosit pentru a obține Pu în reactoarele regeneratoare, dar nu contribuie
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
sunt suficient de energetici pentru a induce o următoare fisiune în U, astfel încât nu este posibilă o reacție în lanț pentru acest izotop. În schimb, bombardând U cu neutroni termici există posibilitatea ca aceștia să fie absorbiți, obținându-se U, izotop care se dezintegrează prin emisie beta către Pu; acest proces este folosit pentru a obține Pu în reactoarele regeneratoare, dar nu contribuie la reacția nucleară în lanț. Izotopii fisionabili dar nefisili pot fi folosiți ca sursă de energie de fisiune
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
neutroni termici există posibilitatea ca aceștia să fie absorbiți, obținându-se U, izotop care se dezintegrează prin emisie beta către Pu; acest proces este folosit pentru a obține Pu în reactoarele regeneratoare, dar nu contribuie la reacția nucleară în lanț. Izotopii fisionabili dar nefisili pot fi folosiți ca sursă de energie de fisiune fără reacție în lanț. Bombardând U cu neutroni rapizi se induc fisiuni și se degajă energie atâta timp cât este prezentă sursa de neutroni. Acest efect este folosit pentru creșterea
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
botezat „fisiune nucleară” (asemănător fisiunii/divizării celulelor vii din biologie). Această ipoteză a fost precedată de descoperirea importantă a lui Otto Hahn și Frizz Strassmann din Germania (publicată în "Naturwissenschaften" la începutul lui Ianuarie 1939) care a demonstrat că un izotop de bariu a fost produs prin bombardarea uraniului. Bohr a promis să păstreze secretă interpretarea Meitner/Frsch până la publicarea lucrării lor, pentru păstrarea priorității, dar la bordul vaporului a discutat această problemă cu Léon Rosenfeld uitând să-l roage s-
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
fost necesară utilizarea unei cantități mari de grafit purificat pe post de material moderator de neutroni. Folosirea apei ușoare (în opoziție cu apa grea) într-un reactor nuclear presupune utilizarea de combustibil îmbogățit (obținut prin creșterea conținutului mai rar răspânditului izotop U din minereul natural conținând cu precădere izotopul U). În mod normal, reactoarele presupun includerea, pe post de moderator de neutroni, a materialelor extrem de pure chimic cum ar fi deuteriu (în apa grea), heliu, beriliu sau carbon sub formă de
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
purificat pe post de material moderator de neutroni. Folosirea apei ușoare (în opoziție cu apa grea) într-un reactor nuclear presupune utilizarea de combustibil îmbogățit (obținut prin creșterea conținutului mai rar răspânditului izotop U din minereul natural conținând cu precădere izotopul U). În mod normal, reactoarele presupun includerea, pe post de moderator de neutroni, a materialelor extrem de pure chimic cum ar fi deuteriu (în apa grea), heliu, beriliu sau carbon sub formă de grafit. (Înalta puritate este cerută deoarece multe impurități
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
înaintea omului în ceea ce privește reacția de fisiune în lanț a uraniului încă de acum 2 miliarde de ani. Acest proces a putut folosi ca moderator apa ușoară deoarece acum 2 miliarde de ani uraniul natural a fost mult mai bogat în izotopi de U decât în zilele noastre.
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
ce delimitează metalele de nemetale. Astfel, seleniul și telurul sunt "semimetale", și se află lângă brom (seleniul este chiar lângă brom, iar telurul se sub seleniu). Structura atomului de brom este determinată de numărul nucleonilor din nucleul atomic, astfel că izotopul său natural, formula 3, are 35 de protoni și 44 de neutroni. Repartiția electronilor pe starturile electronice este dată în tabelul din stânga. Pe baza așezării sale în sistemul periodic, despre brom se pot trage concluziile: datorită faptului că bromul se află
Brom () [Corola-website/Science/302790_a_304119]
-
principală, rezultă atunci că acesta are 7 electroni pe stratul de valență (ultimul strat electronic); bromul, aflându-se în perioada a 4-a, are în total patru straturi electronice, dintre care trei sunt ocupate complet cu electroni. Bromul are doi izotopi stabili, formula 4 (50,69 %) și formula 5 (49,31%). Masa atomică standard al bromului natural este de 79,904 u.a.m. Se cunosc, până la ora actuală, 30 de izotopi radioactivi ai bromului care rezultă fie prin dezintegrarea radioactivă a unor elemente
Brom () [Corola-website/Science/302790_a_304119]
-
electronice, dintre care trei sunt ocupate complet cu electroni. Bromul are doi izotopi stabili, formula 4 (50,69 %) și formula 5 (49,31%). Masa atomică standard al bromului natural este de 79,904 u.a.m. Se cunosc, până la ora actuală, 30 de izotopi radioactivi ai bromului care rezultă fie prin dezintegrarea radioactivă a unor elemente, fie pe cale artificială prin activarea cu neuroni termalizați. Cel mai mic timp de înjumătățire îl are izotopul formula 6, de 24 nanosecunde, iar cel mai mare, de 57,036
Brom () [Corola-website/Science/302790_a_304119]
-
79,904 u.a.m. Se cunosc, până la ora actuală, 30 de izotopi radioactivi ai bromului care rezultă fie prin dezintegrarea radioactivă a unor elemente, fie pe cale artificială prin activarea cu neuroni termalizați. Cel mai mic timp de înjumătățire îl are izotopul formula 6, de 24 nanosecunde, iar cel mai mare, de 57,036 ore, îl are izotopul formula 7. În tabelul din stânga sunt prezentați 11 din cei 32 de izotopi cunoscuți ai bromului cu specificarea tipului de dezintegrare radioactivă, a radionucleului rezultat și
Brom () [Corola-website/Science/302790_a_304119]