2,185 matches
-
care au mai mult de șapte izotopi stabili și neradioactivi. Izotopii Xe, Xe și Xe se descompun prin intermediul radiațiilor beta, dar oamenii de știință nu au avut ocazia să-i observe îndeaproape, deci sunt considerați a fi stabili. În afara acestor izotopi stabili, xenonul mai are alți 40 de izotopi instabili care au fost studiați. Xe este produs prin descompunerea cu radiații beta al lui I, ce are un timp de înjumătățire de 16 milioane de ani, în timp ce Xe, Xe, Xe și
Xenon () [Corola-website/Science/304622_a_305951]
-
și neradioactivi. Izotopii Xe, Xe și Xe se descompun prin intermediul radiațiilor beta, dar oamenii de știință nu au avut ocazia să-i observe îndeaproape, deci sunt considerați a fi stabili. În afara acestor izotopi stabili, xenonul mai are alți 40 de izotopi instabili care au fost studiați. Xe este produs prin descompunerea cu radiații beta al lui I, ce are un timp de înjumătățire de 16 milioane de ani, în timp ce Xe, Xe, Xe și Xe sunt câteva exemple a produsului de fuziune
Xenon () [Corola-website/Science/304622_a_305951]
-
au fost studiați. Xe este produs prin descompunerea cu radiații beta al lui I, ce are un timp de înjumătățire de 16 milioane de ani, în timp ce Xe, Xe, Xe și Xe sunt câteva exemple a produsului de fuziune radioactivă a izotopilor de lantanide U și Pu. Nucleele a doi izotopi stabili ai xenonului, Xe și Xe, au momente cinetice intrinseci diferite de zero (spinii nucleari sunt adecvați pentru rezonanța magnetică nucleară). Spinii nucleari ai Xenonului pot fi aliniați dincolo de nivelurile normale
Xenon () [Corola-website/Science/304622_a_305951]
-
radiații beta al lui I, ce are un timp de înjumătățire de 16 milioane de ani, în timp ce Xe, Xe, Xe și Xe sunt câteva exemple a produsului de fuziune radioactivă a izotopilor de lantanide U și Pu. Nucleele a doi izotopi stabili ai xenonului, Xe și Xe, au momente cinetice intrinseci diferite de zero (spinii nucleari sunt adecvați pentru rezonanța magnetică nucleară). Spinii nucleari ai Xenonului pot fi aliniați dincolo de nivelurile normale de polarizare prin intermediul luminii polarizate circular și a vaporilor
Xenon () [Corola-website/Science/304622_a_305951]
-
mai puternici magneți). Astfel de aranjament neechilibrat al spinilor este o condiție temporară, și se numește hiperpolarizare. Procesul de hiperpolarizare a xenonului se numește de obicei pompaj optic (deși procesul este diferit față de energia optică de pompaj). Datorită faptului că izotopul Xe are valoarea spinul nuclear formula 1, prin urmare, are un moment electric cuadrupolar nul, deci nucleul său nu prezintă nicio o formă de interacțiune cu nucleele altor atomi cu care se ciocnește, astfel, hiperpolarizația sa se menține o perioadă de
Xenon () [Corola-website/Science/304622_a_305951]
-
altor atomi cu care se ciocnește, astfel, hiperpolarizația sa se menține o perioadă de timp îndelungată chiar și după ce acțiunea radiațiilor laser a încetat și vaporii alcalini eliberați se condensează pe suprafetele aflate la temperatura camerei. Polarizare de spin a izotopului Xe poate dura de la câteva secunde pentru atomii de xenon dizolvați în sânge la mai multe ore în in faza gazoasa și de mai multe zile pentru xenonul criogenizat. În schimb, izotopul Xe are spinului nuclear de formula 2 și un
Xenon () [Corola-website/Science/304622_a_305951]
-
aflate la temperatura camerei. Polarizare de spin a izotopului Xe poate dura de la câteva secunde pentru atomii de xenon dizolvați în sânge la mai multe ore în in faza gazoasa și de mai multe zile pentru xenonul criogenizat. În schimb, izotopul Xe are spinului nuclear de formula 2 și un moment electric cuadrupolar nenul, avand un timp de relaxare T cuprins în domeniul dintre milisecunde și secunde. Există izotopi radioactivi ai xenonului, cum ar fi, Xe și Xe, care sunt produși prin
Xenon () [Corola-website/Science/304622_a_305951]
-
in faza gazoasa și de mai multe zile pentru xenonul criogenizat. În schimb, izotopul Xe are spinului nuclear de formula 2 și un moment electric cuadrupolar nenul, avand un timp de relaxare T cuprins în domeniul dintre milisecunde și secunde. Există izotopi radioactivi ai xenonului, cum ar fi, Xe și Xe, care sunt produși prin activarea cu neutroni a materialului fisionabil din zona fierbinte al interiorului reactoarelor nucleare. Xe joacă un rol considerabil în procesul funcționării reactorilor de fisiune nucleară, Xe având
Xenon () [Corola-website/Science/304622_a_305951]
-
valoarea secțiunii eficace de absorbție neutronică foarte mare, de circa 2.6×10 barni, se comportă ca un absorbant efectiv de neutroni care încetinește viteza reacției, până la oprirea ei (otrăvirea reacției) după o anumită perioadă de timp. Acest comportament al izotopului a fost descoperit la exploatarea primelor reactoare nucleare de producere a plutoniului din cadrul proiectului american Manhattan. Din fericire, proiectanții reactoarelor au prevăzut sisteme de rezervă care permiteau creșterea reactivității reactoarelor (mărirea fluxului de neutroni de fisiune care induc alte fisiuni
Xenon () [Corola-website/Science/304622_a_305951]
-
exploatarea primelor reactoare nucleare de producere a plutoniului din cadrul proiectului american Manhattan. Din fericire, proiectanții reactoarelor au prevăzut sisteme de rezervă care permiteau creșterea reactivității reactoarelor (mărirea fluxului de neutroni de fisiune care induc alte fisiuni in nuclele combustibilului). Calitatea izotopului Xe de a otrăvi reacția în lanț, a avut un rol major în declanșarea avariei reactorului care a condus la accidentului nuclear de la Cernobâl. Oprirea sau scăderea puterii unui reactor nuclear poate cauza acumularea de Xe și intrarea reactorului în
Xenon () [Corola-website/Science/304622_a_305951]
-
reactorului care a condus la accidentului nuclear de la Cernobâl. Oprirea sau scăderea puterii unui reactor nuclear poate cauza acumularea de Xe și intrarea reactorului în regim de capcană de iod ("gaură de iod"). In condiții nefavorabile, concentrații relativ mari de izotopi radioactivi de xenon, pot fi produși, în reactoarele nucleare ca urmare a eliberării din barele de combustibil fisurate, sau din procesul de fisiune al uraniului în apa de răcire. Deoarece xenonul este un trasor nuclear pentru doi izotopi părinte, raporul
Xenon () [Corola-website/Science/304622_a_305951]
-
mari de izotopi radioactivi de xenon, pot fi produși, în reactoarele nucleare ca urmare a eliberării din barele de combustibil fisurate, sau din procesul de fisiune al uraniului în apa de răcire. Deoarece xenonul este un trasor nuclear pentru doi izotopi părinte, raporul concentrațiilor de izotpi de xenon din compoziția unor meteoriți reprezintă o metodă extrem de utilă pentru studierea istoriei formării Sistemului Solar.Metoda iod-xenon a datării determină timpul scurs de la nucleosinteza stelară și până la condensarea unui obiect solid din nebuloasa
Xenon () [Corola-website/Science/304622_a_305951]
-
până la condensarea unui obiect solid din nebuloasa solară. În anul 1960, fizicianul John H. Reynolds a descoperit că anumiți meteoriti posedă o anomalie izotopică sub forma unei supraabundențe de Xe. El a demonstrat că aceasta era produsul dezintegrării radioactive a izotopului I . Acest izotop este produs în cantități reduse prin nuclosinteza razelor cosmice și fisiunea nucleară, dar este produs în cantități mari numai la explozia supernovelor. Deoarece timpul de înjumătățire al I este relativ scurt, pe o scară de timp cosmologic
Xenon () [Corola-website/Science/304622_a_305951]
-
obiect solid din nebuloasa solară. În anul 1960, fizicianul John H. Reynolds a descoperit că anumiți meteoriti posedă o anomalie izotopică sub forma unei supraabundențe de Xe. El a demonstrat că aceasta era produsul dezintegrării radioactive a izotopului I . Acest izotop este produs în cantități reduse prin nuclosinteza razelor cosmice și fisiunea nucleară, dar este produs în cantități mari numai la explozia supernovelor. Deoarece timpul de înjumătățire al I este relativ scurt, pe o scară de timp cosmologic, de numai 16
Xenon () [Corola-website/Science/304622_a_305951]
-
de topire de 24 °Celsius. Xenonul mai poate forma compuși fulerenici endoedrali, unde atomii de xenon sunt prinși în interiorul moleculei de fulerene. Atomii de xenon prinși în interiorul fulerenei pot fi monitorizați prin rezonanța magnetică nucleară (NMR, în engleză) a spectrului izotopului Xe. Utilizând această tehnică, reacțiile chimice ale moleculei de fulerene pot fi analizate, datorită sensibilității schimbării chimice a atomului de xenon din această împrejurare. Totuși, atomul de xenon poate avea o influență electronică asupra reactivității fulerenei. Din cauza faptului că atomii
Xenon () [Corola-website/Science/304622_a_305951]
-
ce vizează folosirea energiei nucleare, xenonul este utilizat în camerele cu bule, probe, precum și în cadrul altor aplicații unde natura inertă și masa moleculară mare este preferată. În urma testelor armelor nucleare, rezultă emisii radioactive de xenon-133 și xenon-135, iar detecția acestor izotopi este aplicată în monitorizarea stabilită de tratatele ce interzic testele nucleare, precum și confirmarea unor teste nucleare (de exemplu, Coreea de Nord). Xenonul lichid a început să fie utilizat în calorimetre, pentru a măsura razele gama precum și ca medium în detectarea interacționării ipotetice
Xenon () [Corola-website/Science/304622_a_305951]
-
electrochimice interesante din punct de vedere termodinamic. Între anii 1932 și 1935, în timpul vacantelor și al concediilor de studii, tot la Viena și cu aceeași îndrumare, pregătește teza de doctorat cu titlul “Űber die elektrolytische dissoziation des schweren wassers” (“Prepararea izotopului greu al hidrogenului și determinarea constantei de disociere a apei grele”). Examenul («rigurosum») de doctor îl promovează la 28 octombrie 1935, iar în martie 1936 obține diploma de Doctor în Științe Tehnice. Lucrarea are în străinătate un deosebit răsunet fiind
Emilian Bratu () [Corola-website/Science/325865_a_327194]
-
l a fost sintetizat pentru prima oară de Glenn Seaborg, Leon Morgan, Ralph James și Albert Ghiorso la sfârșitul anului 1944 la Laboratul de Metalurgie al Universității din Chicago (cunoscut acum ca Argonne National Laboratory). Echipa de cercetători a obținut izotopul Am supunând Pu la reacții succesive de capturare de neutroni într-un reactor nuclear . S-a obținut astfel Pu și apoi Pu, care s-a dezintegrat în Am prin dezintegrare beta. Seaborg a obținut brevetul de invenție SUA nr. 3156523
Americiu () [Corola-website/Science/305271_a_306600]
-
radiului. În cantități mai mari, americiul 241 emite radiații gama intense care pot duce la probleme de iradiere pentru cei care manipulează elementul. Masa critică pentru americiul 241 este de aproximativ 60 kg, deci considerabil mai mare decât cea a izotopilor de plutoniu sau de uraniu, astfel încât este puțin probabilă folosirea sa pentru realizarea de arme atomice. Sunt cunoscuți 18 radioizotopi ai americiului, cu greutăți atomice de la 231,046 unități (Am) până la 249,078 unități (Am). Cei mai stabili sunt Am
Americiu () [Corola-website/Science/305271_a_306600]
-
americiului, cu greutăți atomice de la 231,046 unități (Am) până la 249,078 unități (Am). Cei mai stabili sunt Am cu un timp de înjumătățire de 7370 ani și Am cu un timp de înjumătățire de 432,2 ani, toți ceilalți izotopi având timpi de înjumătățire mai scurți de 51 de ore, iar majoritatea chiar mai scurți de 100 de minute. De asemenea, elementul are 8 metastări, cea mai stabilă fiind Am (cu un timp de înjumătățire de 141 ani). Americiul poate
Americiu () [Corola-website/Science/305271_a_306600]
-
mare parte a americiului 241 produs în lume este însă folosită pentru obținerea de Cm ca etapă intermediară pentru obținerea de Pu. Americiul 242 este un emițător de neutroni și este ca atare utilizat uneori în radiografia cu neutroni. Acest izotop este însă prea scump pentru a fi produs în cantități utilizabile. Americiul nu are implicare biologică, deoarece este un metal greu și artificial. S-a încercat utilizarea unor bacterii pentru a strânge urmele de americiu din apele râurilor. Bacteriile Enterobactericeae
Americiu () [Corola-website/Science/305271_a_306600]
-
râurilor. Bacteriile Enterobactericeae din genul Citrobacter au fost singurele ce au putut precipita ionii de americiu din soluțiile apoase. Americiul este un element extrem de radioactiv. Atât el, cât și compușii săi sunt ținuți în laboratoare, în încăperi speciale. Deși majoritatea izotopilor americiului emit radiații alfa, ce sunt blocate de materialele obișnuite de protecție, anumiți izotopi de americiu emit radiații gamma și neutroni ce au un grad de penetrare mai mare. Dacă, accidental este ingerat americiu, acesta este eliminat în câteva zile
Americiu () [Corola-website/Science/305271_a_306600]
-
de americiu din soluțiile apoase. Americiul este un element extrem de radioactiv. Atât el, cât și compușii săi sunt ținuți în laboratoare, în încăperi speciale. Deși majoritatea izotopilor americiului emit radiații alfa, ce sunt blocate de materialele obișnuite de protecție, anumiți izotopi de americiu emit radiații gamma și neutroni ce au un grad de penetrare mai mare. Dacă, accidental este ingerat americiu, acesta este eliminat în câteva zile și doar 0,05% este absorbit în sânge. Din această cantitate 45% se duce
Americiu () [Corola-website/Science/305271_a_306600]
-
patru metale (alături de fier, cobalt și gadoliniu) care prezintă proprietăți magnetice. Nichelul este un metal tranzițional greu și ductil. Atomul de nichel are configurația electronică [Ni] 1s 2s 2p 3s 3p 4s 3d Nichelul apare în natură compus din 5 izotopi stabili: Ni, Ni, Ni, Ni și Ni. Dintre aceștia Ni este cel mai abundent izotop (68,077 %). Cel mai stabil izotop natural este Ni. Există și 18 radioizotopi, cel mai stabil fiind Ni, cu timp de înjumătățire de 760 ani
Nichel () [Corola-website/Science/302788_a_304117]
-
tranzițional greu și ductil. Atomul de nichel are configurația electronică [Ni] 1s 2s 2p 3s 3p 4s 3d Nichelul apare în natură compus din 5 izotopi stabili: Ni, Ni, Ni, Ni și Ni. Dintre aceștia Ni este cel mai abundent izotop (68,077 %). Cel mai stabil izotop natural este Ni. Există și 18 radioizotopi, cel mai stabil fiind Ni, cu timp de înjumătățire de 760 ani, apoi Ni cu timpul de înjumătățire de 100 ani și Ni cu timp de înjumătățire
Nichel () [Corola-website/Science/302788_a_304117]