1,919 matches
-
teoriei propagării luminii în spațiul fizic. Exemple de astfel de diferențe sunt dilatarea temporală gravitațională, deplasarea spre roșu gravitațională a luminii, și întârzierea gravitațională. Previziunile relativității generale au fost confirmate de observațiile empirice efectuate în toate domeniile științelor experimentale. Deși relativitatea generală nu este singura teorie relativistă a gravitației, ea reprezintă cea mai simplă teorie în acord cu datele experimentale. Totuși, teoria nu oferă răspuns la câteva dileme teoretice, cea mai fundamentală dintre acestea fiind modalitatea în care se poate unifica
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
unele tipuri de obiecte astronomice, cum ar fi nucleele galactice active sau microquasarii. Curbura traiectoriei luminii sub efectul gravitației conduce la apariția efectului de lentilă gravitațională, prin care imaginile obiectelor cosmice aflate în spatele lentilei sunt distorsionate sau uneori chiar multiplicate. Relativitatea generală prezice existența undelor gravitaționale, care au fost măsurate indirect. O măsurare directă a acestora este scopul mai multor proiecte, între care și LIGO. În plus, relativitatea generală stă la baza modelelor cosmologice actuale ale unui univers în expansiune. Curând
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
care imaginile obiectelor cosmice aflate în spatele lentilei sunt distorsionate sau uneori chiar multiplicate. Relativitatea generală prezice existența undelor gravitaționale, care au fost măsurate indirect. O măsurare directă a acestora este scopul mai multor proiecte, între care și LIGO. În plus, relativitatea generală stă la baza modelelor cosmologice actuale ale unui univers în expansiune. Curând după publicarea în 1905 a teoriei relativității restrânse, Einstein a început să se gândească la cum ar putea fi inclusă gravitația în noul context al mecanicii relativiste
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
au fost măsurate indirect. O măsurare directă a acestora este scopul mai multor proiecte, între care și LIGO. În plus, relativitatea generală stă la baza modelelor cosmologice actuale ale unui univers în expansiune. Curând după publicarea în 1905 a teoriei relativității restrânse, Einstein a început să se gândească la cum ar putea fi inclusă gravitația în noul context al mecanicii relativiste. Reflecțiile sale l-au condus de la un simplu experiment imaginar, care implica un observator în cădere liberă la principiul de
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
inclusă gravitația în noul context al mecanicii relativiste. Reflecțiile sale l-au condus de la un simplu experiment imaginar, care implica un observator în cădere liberă la principiul de echivalență (legile fizicii pentru un observator în cădere liberă sunt cele ale relativității restrânse) și de acolo la o teorie în care gravitația este descrisă într-un limbaj geometric pur: de la explorarea unor consecințe ale principiului de echivalență cum ar fi influența gravitației și accelerației asupra propagării luminii, publicată în 1907 până la principalele
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
și ale altora, a devenit clar că universul se extinde (și astfel este mai bine descris de soluțiile cosmologice cu extindere găsite de Friedmann în 1922), Lemaître a formulat prima versiune a modelelor big bang. De-a lungul acestei perioade, relativitatea generală a rămas oarecum o curiozitate printre teoriile fizicii. Au existat dovezi că era preferabilă în raport cu descrierea anterioară a gravitației, cea datorată lui Newton: Einstein însuși arătase în 1915 că precesia periheliului planetei Mercur, inexplicabilă până la acea dată prin considerente
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
a face măsurători de mare precizie asupra paralaxei stelelor îndepărtate cu ocazia unei eclipse solare totale, a reușit să pună în evidență prin măsurători directe fenomenul curbării razelor luminoase, atunci când ele trec în vecinătatea Soarelui, în perfectă concordanță cu predicțiile relativității generale (aducându-i imediat lui Einstein o faimă mondială). În ciuda acestor confirmări timpurii, teoria a devenit o componentă importantă și unanim acceptată din cadrul fizicii teoretice și astrofizicii abia în perioada dintre 1960 și 1975, cunoscută astăzi ca "Epoca de aur
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
aducându-i imediat lui Einstein o faimă mondială). În ciuda acestor confirmări timpurii, teoria a devenit o componentă importantă și unanim acceptată din cadrul fizicii teoretice și astrofizicii abia în perioada dintre 1960 și 1975, cunoscută astăzi ca "Epoca de aur a relativității generale", devenind baza teoretică a existenței și descrierii găurilor negre, făcând posibilă și clarificarea deplină a aplicațiilor astrofizice ale acestora (quasari). În același timp, măsurători din ce în ce mai precise efectuate asupra sistemului solar au confirmat puterea de predicție a teoriei, iar cosmologia
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
găurilor negre, făcând posibilă și clarificarea deplină a aplicațiilor astrofizice ale acestora (quasari). În același timp, măsurători din ce în ce mai precise efectuate asupra sistemului solar au confirmat puterea de predicție a teoriei, iar cosmologia relativistă a devenit verificabilă prin teste direct observabile. Relativitatea generală se înțelege cel mai bine prin analiza asemănărilor și deosebirilor față de fizica clasică. Primul pas îl constituie conștientizarea faptului că mecanica clasică și legea gravitației a lui Newton admit o descriere geometrică. Unificarea acestei descrieri cu legile relativității restrânse
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
observabile. Relativitatea generală se înțelege cel mai bine prin analiza asemănărilor și deosebirilor față de fizica clasică. Primul pas îl constituie conștientizarea faptului că mecanica clasică și legea gravitației a lui Newton admit o descriere geometrică. Unificarea acestei descrieri cu legile relativității restrânse conduc pe cale euristică la construcția teoriei relativității generalizate. La baza mecanicii clasice se află ideea că mișcarea unui corp poate fi descrisă ca o combinație de mișcare liberă (sau inerțială), și deviații de la această mișcare liberă. Deviațiile sunt cauzate
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
prin analiza asemănărilor și deosebirilor față de fizica clasică. Primul pas îl constituie conștientizarea faptului că mecanica clasică și legea gravitației a lui Newton admit o descriere geometrică. Unificarea acestei descrieri cu legile relativității restrânse conduc pe cale euristică la construcția teoriei relativității generalizate. La baza mecanicii clasice se află ideea că mișcarea unui corp poate fi descrisă ca o combinație de mișcare liberă (sau inerțială), și deviații de la această mișcare liberă. Deviațiile sunt cauzate de forțe externe, care acționează asupra unui corp
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
prezența masei. Oricât de stranie ar părea gravitația geometrică newtoniană, baza ei, și anume mecanica clasică, este doar un caz limită de mecanică relativistă. În limbajul simetriilor: unde nu poate fi neglijată gravitația, legile fizicii sunt invariante Lorentz ca în relativitatea restrânsă, și nu invariante Galilei ca în mecanica clasică. (Simetria definitorie a relativității restrânse este grupul Poincaré care include atât translațiile cât și rotațiile.) Diferențele existente între cele două devin semnificative când avem de-a face cu viteze care se
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
anume mecanica clasică, este doar un caz limită de mecanică relativistă. În limbajul simetriilor: unde nu poate fi neglijată gravitația, legile fizicii sunt invariante Lorentz ca în relativitatea restrânsă, și nu invariante Galilei ca în mecanica clasică. (Simetria definitorie a relativității restrânse este grupul Poincaré care include atât translațiile cât și rotațiile.) Diferențele existente între cele două devin semnificative când avem de-a face cu viteze care se apropie de viteza luminii și cu fenomene care au loc la energii mari
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
de observator. În conjuncție cu liniile de univers ale particulelor în mișcare liberă, conurile luminoase pot fi utilizate pentru a reconstrui metrica semiriemanniană a spațiu-timpului, cel puțin până la un factor scalar pozitiv. În termeni matematici, aceasta definește o structură conformă. Relativitatea restrânsă este definită în absența gravitației, astfel că, în aplicațiile practice, este un model potrivit pentru situațiile în care gravitația poate fi neglijată. Introducând și gravitația în ecuație, și presupunând universalitatea căderii libere (mișcările geodezice), se aplică un raționament analog
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
gravitație, sunt deformate și devin linii curbe una față de alta, sugerând că includerea gravitației necesită o schimbare a geometriei spațiu-timpului. A priori, nu este clar dacă noile sisteme de referință locale în mișcare geodezică coincid cu cele în care legile relativității restrânse rămân valabile—această teorie se bazează pe propagarea luminii, și deci pe electromagnetism, care ar putea avea o altă mulțime de sisteme preferate. În ipotezele diferite cu privire la sistemele de referință din relativitatea restrânsă (cum ar fi că sunt legate
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
geodezică coincid cu cele în care legile relativității restrânse rămân valabile—această teorie se bazează pe propagarea luminii, și deci pe electromagnetism, care ar putea avea o altă mulțime de sisteme preferate. În ipotezele diferite cu privire la sistemele de referință din relativitatea restrânsă (cum ar fi că sunt legate solidar de Pământ sau de corpul în mișcare pe geodezică), se pot obține noi predicții privind deplasarea gravitațională spre roșu, adică modificarea frecvenței luminii pe măsură ce aceasta se propagă printr-un câmp gravitațional. Măsurătorile
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
se pot obține noi predicții privind deplasarea gravitațională spre roșu, adică modificarea frecvenței luminii pe măsură ce aceasta se propagă printr-un câmp gravitațional. Măsurătorile efective arată că sistemele în mișcare geodezică sunt cele în care lumina se propagă așa cum prevede teoria relativității restrânse. Generalizarea acestei propoziții, și anume că legile relativității restrânse sunt valabile într-o bună aproximație în sistemele de referință nerotative aflate în mișcare geodezică (cădere liberă), este denumită principiul de echivalență al lui Einstein, un principiu esențial pentru generalizarea
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
roșu, adică modificarea frecvenței luminii pe măsură ce aceasta se propagă printr-un câmp gravitațional. Măsurătorile efective arată că sistemele în mișcare geodezică sunt cele în care lumina se propagă așa cum prevede teoria relativității restrânse. Generalizarea acestei propoziții, și anume că legile relativității restrânse sunt valabile într-o bună aproximație în sistemele de referință nerotative aflate în mișcare geodezică (cădere liberă), este denumită principiul de echivalență al lui Einstein, un principiu esențial pentru generalizarea fizicii relativiste restrânse cu includerea gravitației. Aceleași date experimentale
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
principiul de echivalență al lui Einstein, un principiu esențial pentru generalizarea fizicii relativiste restrânse cu includerea gravitației. Aceleași date experimentale arată că timpul măsurat de ceasurile aflate într-un câmp gravitațional—timpul propriu, cum este el denumit—nu respectă regulile relativității restrânse. În termenii geometriei spațiu-timpului, timpul nu este măsurat conform metricii Minkowski. Ca și în cazul newtonian, aceasta sugerează o geometrie mai generală. La nivel local, toate sistemele de referință în mișcare geodezică sunt echivalente, și cvasi-minkowskiene. În consecință, acum
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
mișcare geodezică sunt echivalente, și cvasi-minkowskiene. În consecință, acum avem de-a face cu o generalizare a spațiului Minkowski. Tensorul metric care definește geometria—în particular, felul în care se măsoară distanțele și unghiurile—nu este metrica Minkowski din teoria relativității restrânse, ci o generalizare a sa, despre care se știe că este o metrică semi- sau pseudoriemanniană. Mai mult, toate metricile riemanniene sunt asociate în mod natural cu un anume tip de legătură, și anume cu legătura Levi-Civita, și aceasta
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
minkowskiană, și primele sale derivate parțiale și coeficienții de legătură dispar). După ce s-a formulat versiunea relativistă, geometrică a efectelor gravitațonale, mai rămâne problema cauzei(sursei) gravitației. În teoria newtoniană, sursa generatoare a câmpului gravitațional o reprezintă masa. În teoria relativității restrânse, masa se dovedește a fi o componentă a unei mărimi mai generale, denumită tensorul energie-impuls, care include atât densitatea de energie cât și pe cea de impuls, precum și tensiunea mecanică (presiunea și forțele deformatoare). Utilizând principiul de echivalență, acest
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
tensor de tensorul Ricci, care descrie o clasă particulară de efecte mareice: schimbarea volumului unui nor mic de particule de test aflate inițial în repaus, și apoi puse în mișcare geodezică (cădere liberă) în raport cu un sistem de referință inerțial. În relativitatea restrânsă, teoremele conservării energiei și a impulsului corespund afirmației că tensorul energie-impuls nu are divergență. Această formulă poate fi, și ea, generalizată la un spațiu-timp curbat prin înlocuirea derivatelor parțiale cu corespondentele lor din varietatea curbată, și anume derivatele covariante
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
de proporționalitate poate fi fixată la valoarea formula 6, unde formula 7 este constanta gravitațională iar formula 8 este viteza luminii în vid. Dacă nu este prezentă materia, astfel încât tensorul energie-impuls devine nul, se obțin "ecuațiile Einstein în vid", Există teorii alternative la relativitatea generală, teorii construite pe premise similare, și care includ reguli și/sau constrângeri suplimentare, conducând la alte ecuații de câmp. Astfel de exemple sunt teoria Brans-Dicke, teleparalelismul, și teoria Einstein-Cartan. Ecuația din secțiunea anterioară conține toată informația necesară pentru definirea
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
generală, teorii construite pe premise similare, și care includ reguli și/sau constrângeri suplimentare, conducând la alte ecuații de câmp. Astfel de exemple sunt teoria Brans-Dicke, teleparalelismul, și teoria Einstein-Cartan. Ecuația din secțiunea anterioară conține toată informația necesară pentru definirea relativității generale, pentru descrierea proprietăților sale de bază și pentru tratarea unei probleme de importanță crucială în fizică: felul cum ar putea fi folosită această teorie pentru construirea de modele. Relativitatea generalizată este o teorie metrică a gravitației. La baza sa
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
Ecuația din secțiunea anterioară conține toată informația necesară pentru definirea relativității generale, pentru descrierea proprietăților sale de bază și pentru tratarea unei probleme de importanță crucială în fizică: felul cum ar putea fi folosită această teorie pentru construirea de modele. Relativitatea generalizată este o teorie metrică a gravitației. La baza sa stau ecuațiile lui Einstein, care descriu relația dintre geometria unei varietăți tetradimensionale, semi-riemanniene, care reprezintă spațiu-timpul pe de o parte, și energia și impulsul conținute în acel spațiu-timp, pe de
Teoria relativității generale () [Corola-website/Science/309426_a_310755]