1,115 matches
-
amestecuri de soluții se reprezintă grafic variația extincției în funcție de compoziția amestecului. Din poziția maximului curbelor obținute, se determină raportul molar de combinare M:L. 5.1.1.4.3 Determinarea compoziției compușilor ionului feric cu acidul sulfosalicilic prin metoda raporturilor molare 5.1.1.4.3.1 Modul de lucru Se prepară 250 cm3 soluție tampon cu pH = 2 și 250 cm3 soluție tampon cu pH = 9 după cum s-a arătat anterior. Se prepară câte 100 cm3 soluție de concentrație 5
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
9). 5.1.1.4.3.2 Interpretarea rezultatelor Se reprezintă grafic variația extincției în funcție de raportul M:L pentru fiecare serie de amestecuri de soluții. Din proiecția pe abscisă a punctului de discontinuitate a ramurilor de dreaptă, se determină raportul molar de combinare M:L. 5.1.2 Determinarea compoziției compușilor coordinativi prin metoda refractometrică 5.1.2.1 Considerații teoretice Metoda refractometrică se bazează pe determinarea indicelui de refracție al substanței de analizat. Dacă o rază de lumină trece dintr-
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
trasează graficul variației indicelui de refracție în funcției de componența amestecurilor Cu2+ - acid sulfosalicilic. Apariția unui minim sau maxim, a unui punct de inflexiune sau a unei schimbări de pantă pe curbă indică formarea unui nou compus, al cărui raport molar de combinare se determină prin proiecția punctului caracteristic de pe curbă pe axa absciselor. 5.1.3 Determinarea tipului compușilor coordinativi prin metoda conductometrică 5.1.3.1 Considerații teoretice Conductibilitate electrică a unui mediu reprezintă mărimea care exprimă capacitatea acestuia
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
factori, precum natura substanței și temperatura; în cazul soluțiilor, aceasta depinde și de concentrație. Se definește conductibilitatea echivalentă ca fiind conductibilitatea specifică raportată la numărul de echivalenți-gram dintr-un litru de soluție, respectiv concentrația normală (cN): </formula> (5.7) Conductibilitatea molară este raportul dintre conductibilitatea specifică și numărul de moli dintr-un litru de soluție, respectiv concentrația molară (cM): </formula> (5.8) Aceste mărimi sunt influențate de aceiași factori care influențează și conductibilitatea specifică. Conductibilitatea echivalentă crește la mărirea diluției soluției
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
echivalentă ca fiind conductibilitatea specifică raportată la numărul de echivalenți-gram dintr-un litru de soluție, respectiv concentrația normală (cN): </formula> (5.7) Conductibilitatea molară este raportul dintre conductibilitatea specifică și numărul de moli dintr-un litru de soluție, respectiv concentrația molară (cM): </formula> (5.8) Aceste mărimi sunt influențate de aceiași factori care influențează și conductibilitatea specifică. Conductibilitatea echivalentă crește la mărirea diluției soluției ca urmare a creșterii gradului de disociere și, în mai mică măsură, datorită măririi mobilității ionilor. De
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
tipul acestora (electrolit sau neelectrolit), obținând astfel indicații asupra numărului de ioni din soluție. De asemenea, se poate determina sarcina ionilor complecși. Dacă disocierea combinației complexe se realizează în doi ioni (adică este un electrolit de tip 1:1) conductibilitatea molară a combinației variază în jurul valorii de 100 (</formula>). Când combinația disociază în trei ioni, conductibilitatea molară are o valoare cuprinsă în domeniul 220 ÷ 250 (</formula>). Pentru cazul disocierii în patru ioni a compusului, conductibilitatea sa molară are o valoare care
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
se poate determina sarcina ionilor complecși. Dacă disocierea combinației complexe se realizează în doi ioni (adică este un electrolit de tip 1:1) conductibilitatea molară a combinației variază în jurul valorii de 100 (</formula>). Când combinația disociază în trei ioni, conductibilitatea molară are o valoare cuprinsă în domeniul 220 ÷ 250 (</formula>). Pentru cazul disocierii în patru ioni a compusului, conductibilitatea sa molară are o valoare care aparține, în general, intervalului 400 ÷ 450 În situația disocierii combinației în cinci ioni, conductibilitatea molară a
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
tip 1:1) conductibilitatea molară a combinației variază în jurul valorii de 100 (</formula>). Când combinația disociază în trei ioni, conductibilitatea molară are o valoare cuprinsă în domeniul 220 ÷ 250 (</formula>). Pentru cazul disocierii în patru ioni a compusului, conductibilitatea sa molară are o valoare care aparține, în general, intervalului 400 ÷ 450 În situația disocierii combinației în cinci ioni, conductibilitatea molară a soluției sale este cuprinsă în domeniul 500 ÷ 550 (</formula>). etc. Sunt cazuri când conductibilitatea soluțiilor unor compuși coordinativi variază în
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
conductibilitatea molară are o valoare cuprinsă în domeniul 220 ÷ 250 (</formula>). Pentru cazul disocierii în patru ioni a compusului, conductibilitatea sa molară are o valoare care aparține, în general, intervalului 400 ÷ 450 În situația disocierii combinației în cinci ioni, conductibilitatea molară a soluției sale este cuprinsă în domeniul 500 ÷ 550 (</formula>). etc. Sunt cazuri când conductibilitatea soluțiilor unor compuși coordinativi variază în timp. Prin conductometrie se pot studia diferite echilibre chimice (cu formare de combinații complexe), cu participarea unor ioni metalici
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
valorile obținute, se determină valoarea medie a celulei conductometrului. Utilizând valorile obținute pentru conductanțele soluțiilor compușilor coordinativi studiați și ale constantei celulei aparatului de măsură, se exprimă conductibilitățile specifice ale soluțiilor de combinații complexe folosind formula (5.6). Cunoscând concentrația molară a soluțiilor de compuși coordinativi, se calculează conductilitățile molare ale acestora pe baza relației (5.8). Din valoarea obținută pentru fiecare combinație, se formulează concluzii privind numărul de ioni în care disociază compusul respectiv și se scriu echilibrele de disociere
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
Utilizând valorile obținute pentru conductanțele soluțiilor compușilor coordinativi studiați și ale constantei celulei aparatului de măsură, se exprimă conductibilitățile specifice ale soluțiilor de combinații complexe folosind formula (5.6). Cunoscând concentrația molară a soluțiilor de compuși coordinativi, se calculează conductilitățile molare ale acestora pe baza relației (5.8). Din valoarea obținută pentru fiecare combinație, se formulează concluzii privind numărul de ioni în care disociază compusul respectiv și se scriu echilibrele de disociere electrolitică în soluție apoasă. 5.2 Studiul stabilității compușilor
Chimie coordinativă. Lucrări practice by Cristina Stoian () [Corola-publishinghouse/Science/637_a_1122]
-
5. Ce cantitate de permanganat de potasiu este necesară preparării a 300 ml soluție de concentrație 0,05 N. 6. Calculați câte grame de acid clorhidric se află dizolvate în 500 ml soluție de concentrație 2 M, știind că masa molară a acidului este de 36,5. 7. Calculați molaritatea unei soluții care conține dizolvat 1 g NaOH în 250 ml soluție. 8. Calculați normalitatea unei soluții de acid sulfuric ce conține 0,98 g H2SO4 dizolvați în 500 ml soluție
Chimia alimentelor. Analiza substraturilor alimentare by Lucia Carmen Trincă, Adina Mirela Căpraru () [Corola-publishinghouse/Science/430_a_1254]
-
de 36,5. 7. Calculați molaritatea unei soluții care conține dizolvat 1 g NaOH în 250 ml soluție. 8. Calculați normalitatea unei soluții de acid sulfuric ce conține 0,98 g H2SO4 dizolvați în 500 ml soluție, știind că masa molară a H2SO4 este 98. CARACTERISTICI ORGANOLEPTICE ȘI PROPRIETĂȚI FIZICO-CHIMICE A SUBSTRATURILOR ALIMENTARE CAPITOLUL I SUBSTRATURI ALIMENTARE CE CONȚIN PREPONDERENT GLUCIDE I.1. LEGUME ȘI FRUCTE Legumele și fructele sunt substraturi alimentare de origine vegetală. Cunoașterea caracteristicilor organoleptice și a compoziției
Chimia alimentelor. Analiza substraturilor alimentare by Lucia Carmen Trincă, Adina Mirela Căpraru () [Corola-publishinghouse/Science/430_a_1254]
-
de MgSO4; Compuși cu Ag: se bea soluție de NaCl. Lucrarea 2 MĂRIMI FUNDAMENTALE ÎN CHIMIE I. MASĂ MOLECULARĂ 1. Scopul lucrării. Această lucrarea își propune definirea unor mărimi fundamentale în chimie(masă atomică, masă moleculară, atom-gram și moleculă-gram, volum molar etc.) și determinarea experimentală a masei moleculare a gazelor. 2. CONSIDERAȚII TEORETICE Atomul este cea mai mică particulă din care sunt alcătuite combinațiile chimice simple și compuse. Aurul, de exemplu, este o substanță simplă. Dacă am lua un inel din
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
pe zi, 365 de zile pe an, numărând particule cu o viteză de numărare de o particulă/secundă ar trebuie să treacă aproape 2 miliarde de ani pentru a putea număra câte particule sunt într-un mol de substanță. Volumul molar, reprezintă volumul ocupat de o moleculă-gram din orice gaz în condiții normale ( 0șC și 760 mm Hg) și acesta reprezintă o constantă fiind egal cu 22,41 l. Masa moleculară a unui amestec de gaze este dată de suma produselor
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
există o relație matematică mult utilizată pentru exprimarea acestui tip de concentrație, dar ea este derivată din relația de bază deoarece utilizează legătura dintre numărul de moli νd pe de o parte și masa de solut md și valoarea masei molare de solut Md pe de altă parte. Adică, dacă în relația de bază se introduce egalitatea νd= md/Md se obține binecunoscuta relație derivată. c) Concentrația normală sau normalitatea notată cu cN reprezintă cantitatea de solut, exprimată în număr de
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
de solvent. Relația matematică, provenită din definiție, ce caracterizează acest tip de concentrație este. f) Fracțiile notate cu x reprezintă raportul cantităților dintre un component și toți componenții soluției. Funcție de modul de exprimare a acestor cantități deosebim fracții masice, fracții molare sau fracții volumice. Acest mod de exprimare a concentrației este utilizat în special în cazul soluțiilor multicomponente. De exemplu, în cazul unei soluții cu trei componenți A, B și C fracțiile masice, molare și volumice a celor trei componenți vor
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
a acestor cantități deosebim fracții masice, fracții molare sau fracții volumice. Acest mod de exprimare a concentrației este utilizat în special în cazul soluțiilor multicomponente. De exemplu, în cazul unei soluții cu trei componenți A, B și C fracțiile masice, molare și volumice a celor trei componenți vor fi. g) Rapoartele notate cu X reprezintă raportul cantității unui component și al unui alt component aflat în soluție. Funcție de modul de exprimare a acestor cantități deosebim fracții masice, fracții molare sau fracții
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
fracțiile masice, molare și volumice a celor trei componenți vor fi. g) Rapoartele notate cu X reprezintă raportul cantității unui component și al unui alt component aflat în soluție. Funcție de modul de exprimare a acestor cantități deosebim fracții masice, fracții molare sau fracții volumice. De exemplu în cazul a trei componenți putem scrie câte șase raporte din fiecare tip: masic, molar sau volumic. Pentru simplificare vom nota numai rapoartele masice. 2) Să se demonstreze că pentru o soluție care conține n
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
component și al unui alt component aflat în soluție. Funcție de modul de exprimare a acestor cantități deosebim fracții masice, fracții molare sau fracții volumice. De exemplu în cazul a trei componenți putem scrie câte șase raporte din fiecare tip: masic, molar sau volumic. Pentru simplificare vom nota numai rapoartele masice. 2) Să se demonstreze că pentru o soluție care conține n componenți numărul maxim de rapoarte masice este n(n-1) 3) Să se determine concentrația procentuală și molală a unei
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
fi exploatată trebuie cunoscute 4 dintre necunoscute după care se obține pe baza ei și a 5-a necunoscută. Trebuie să menționăm faptul că regula dreptunghiului rămâne valabilă indiferent de modul de exprimare a concnetrațiilor, dar dacă lucrăm cu concentrații molare sau normale, pe latura din stânga și în centru vor fi trecute valorile molarităților sau normalităților iar pe latura din dreapta volumele soluțiilor corespunzătoare. Exemplu de aplicare a regulii dreptunghiului: Bateriile de automobil conțin drept electrolit soluție de H2SO4 cu densitatea de
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
cu densitatea 1,83 g/mL, concentrația finală a acidului fiind 20%? 4. Acidul sulfuric obținut prin metoda turnurilor are o concentrație de 74,66 % și densitatea 1,67 g/mL. Să se exprime concentrația acidului în toate modurile cunoscute (molară, normală, molală, titrul și fracțiile molare ale acidului sulfuric și ale apei). 5. Se amestecă două soluții de acid sulfuric: una de concentrație 80% și cealaltă de concentrație 10%. Se cere: raportul în care trebuie să se amestece cele două
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
concentrația finală a acidului fiind 20%? 4. Acidul sulfuric obținut prin metoda turnurilor are o concentrație de 74,66 % și densitatea 1,67 g/mL. Să se exprime concentrația acidului în toate modurile cunoscute (molară, normală, molală, titrul și fracțiile molare ale acidului sulfuric și ale apei). 5. Se amestecă două soluții de acid sulfuric: una de concentrație 80% și cealaltă de concentrație 10%. Se cere: raportul în care trebuie să se amestece cele două soluții pentru a obține o soluție
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
20%; cantitatea de soluție 80% și 10% de acid sulfuric care trebuie amestecate pentru a obține 700g soluție de acid sulfuric de concentrație 20%; știind că densitatea soluției de acid sulfuric 20% este 1,14g/mL să se determine concentrația molară, normală și molalitatea soluției obținute; să se determine volumul gazului (măsurat în condiții normale) ce se degajă prin acțiunea soluției de acid sulfuric asupra aluminiului precum și densitatea relativă a acestui gaz față de aer (Maer= 28,9). 97 SĂRURILE ACIDULUI SULFURIC-SULFAȚI
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_634]
-
de MgSO4; Compuși cu Ag: se bea soluție de NaCl. Lucrarea 2 MĂRIMI FUNDAMENTALE ÎN CHIMIE I. MASĂ MOLECULARĂ 1. Scopul lucrării. Această lucrarea își propune definirea unor mărimi fundamentale în chimie(masă atomică, masă moleculară, atom-gram și moleculă-gram, volum molar etc.) și determinarea experimentală a masei moleculare a gazelor. 2. CONSIDERAȚII TEORETICE Atomul este cea mai mică particulă din care sunt alcătuite combinațiile chimice simple și compuse. Aurul, de exemplu, este o substanță simplă. Dacă am lua un inel din
Aplicaţii practice privind sinteza şi caracterizarea compuşilor anorganici by Prof. dr. ing.Daniel Sutiman, Conf. dr. ing. Adrian Căilean, Ş.l. dr. ing. Doina Sibiescu, Ş.l. dr. chim. Mihaela Vizitiu, Asist. dr.chim. Gabriela Apostolescu () [Corola-publishinghouse/Science/314_a_635]