190 matches
-
cu succes proprietățile nucleului în ceea ce privește aceste particule sub-atomice și forțele care guvernează interacțiunile lor. Deși cuvântul "atom" denumea inițial o particulă care nu poate fi împărțită în particule mai mici, în utilizarea științifică modernă atomul este compus din diferite particule subatomice. Particulele constituente ale unui atom sunt electronii, protonii și neutronii; toate trei sunt fermioni. Ca excepție, atomul de hidrogen-1 nu are neutroni, iar nu are electroni. Electronul este de departe cel mai puțin masiv din aceste particule, la , cu sarcină
Atom () [Corola-website/Science/297795_a_299124]
-
keV, pentru a depăși respingerea——și a fuziona într-un singur nucleu. Fisiunea nucleară este procesul invers, provocarea divizării unui nucleu în două nuclee mai mici—de obicei, prin dezintegrare radioactivă. Nucleul poate fi modificat și prin bombardament cu particule subatomice sau fotoni de mare energie. Dacă aceasta modifică numărul de protoni din nucleu, atomul se transformă într-un alt element chimic. Dacă în urma unei reacții de fuziune masa nucleului este mai mică decât suma maselor particulelor separate, atunci diferența dintre
Atom () [Corola-website/Science/297795_a_299124]
-
măsurători von Neumann) sau neideale (măsurători Landau). De observat că și produsul incertitudinilor, de ordinul 10 Joule-secundă, este atât de mic încât principiul incertitudinii are efect neglijabil la scară macroscopică, în ciuda importanței pe care o are la nivel atomic sau subatomic. Principiul incertitudinii a fost un pas important în dezvoltarea mecanicii cuantice când a fost formulat de Werner Heisenberg în 1927. Este adesea confundat cu efectul de observator. Un postulat fundamental al mecanicii cuantice, care se manifestă în principiul incertitudinii al
Principiul incertitudinii () [Corola-website/Science/308245_a_309574]
-
empirică simplă. Un criteriu prin care am putea judeca succesul unei teorii științifice este puterea de explicare pe care aceasta ne-o dă, și până acum se pare că vederea lui Heisenberg a fost mai bună la a explica fenomenele subatomice. Principiul incertitudinii este enunțat în mai multe feluri în cultura populară, de exemplu, prin afirmația că este imposibil de știut exact în același timp și unde se află un electron și unde se duce. Este corect în linii mari, deși
Principiul incertitudinii () [Corola-website/Science/308245_a_309574]
-
a existenței diversității vieții pe Pământ. De-a lungul timpului, au existat mai multe teorii, mai mult sau mai putin științifice: În cursul secolului XX, noțiunea de evoluție a fost extinsă în totalitatea universului, deci la toate organismele, de la particulele subatomice la societatea umană de teologi și oameni de știință ca Pierre Teilhard de Chardin, Julian Huxley și James Lovelock (teoria Gaia). Viața, sub toate formele ei, este o formă de chimie devreme ce consumă, transformă și produce materie și energie
Evoluție () [Corola-website/Science/302078_a_303407]
-
mult mai slaba forță gravitațională, forța electromagnetică ce face ca doi electroni să se respingă este de 10 ori mai puternică decât atracția gravitațională care îi trage împreună. Studiile au arătat că originea sarcinii stă în anumite tipuri de particule subatomice care poartă proprietatea de sarcină electrică. Sarcina electrică generează și interacționează cu forța electromagnetică, una dintre cele patru forțe fundamentale ale naturii. Cei mai cunoscuți purtători de sarcină electrică sunt electronii și protonii. Experimentele au arătat că sarcina se , adică
Electricitate () [Corola-website/Science/302842_a_304171]
-
Sarcina electrică sau cantitatea de electricitate este o mărime fizică ce exprimă o proprietate fundamentală a particulelor subatomice, care le determină acestora interacțiunile electromagnetice. Materia încărcată electric este influențată de câmpul electric, și în același timp produce câmp electric. Interacțiunea dintre o sarcină în mișcare și un câmp electromagnetic este sursa forței electromagnetice, care este una dintre cele
Sarcină electrică () [Corola-website/Science/311513_a_312842]
-
în mișcare și un câmp electromagnetic este sursa forței electromagnetice, care este una dintre cele patru forțe fundamentale. O "distrugere" a sarcinilor electrice, nu este posibilă; este vorba de "conservarea" sarcinilor (formă de energie). Sarcina electrică este caracteristică unor particule subatomice, și este cuantificată când este exprimată doar ca multiplu al așa-numitei sarcini elementare "e", care are valoarea de 1,602·10 C (coulomb). Existența sarcinilor electrice este întotdeauna legată (necondiționat) de existență de materie. Există sarcini pozitive și sarcini
Sarcină electrică () [Corola-website/Science/311513_a_312842]
-
o înțelegere mai bună a interacțiilor particulelor cu sarcină electrică, cum ar fi electronii,sau pozitronii cu electromagnetice, cum ar fi undele radio, fotonii, radiația Roentgen sau cuantele gama, dovedindu-se utilă la explicarea fenomenelor fizice din lumea atomică și subatomică. Trei dintre acești fizicieni: Schwinger la Harvard, Feynman la Institutul de tehnologie din California și Tomonaga- la Universitatea de educație din Tokyo au fost decorați în anul 1965 cu Premiul Nobel în domeniul fizicii.
Julian Schwinger () [Corola-website/Science/311197_a_312526]
-
în 1954-55, a devenit profesor la Universitatea Chicago înainte de a se muta la Institutul de Tehnologie California, unde a predat între 1955 și 1993. Laureat al premiului Nobel pentru Fizică în 1969 pentru descoperirea unui sistem de clasificare a particulelor subatomice. Actualmente, este profesor emerit de fizică teoretică la Caltech și profesor universitar în cadrul departamentului de fizică și astronomie din Universitatea New Mexico din Albuquerque, New Mexico. Este membru al comisiei editoriale a "Enciclopediei Britannica". În 1984 Gell-Mann a co-fondat Institutul
Murray Gell-Mann () [Corola-website/Science/311201_a_312530]
-
Dar acronimul poate rămâne CERN chiar dacă numele nu mai este acela."). La scurt timp după înființare, activitățiile laboratorului au depășit studiul nucleului atomic și au intrat în domeniul fizicii energiilor înalte, domeniu care se ocupă în principal cu interacțiunile particulelor subatomice. Prin urmare, laboratorul CERN a primit o nouă denumire: "Laboratorul European pentru Fizica Particulelor" ("Laboratoire européen pour la physique des particules"), nume care descrie mai bine activitățile curente de la CERN. Acronimul "CERN" a fost însă păstrat. După înființare, la CERN
CERN () [Corola-website/Science/311288_a_312617]
-
trimiterea cu viteză mare a unor fluxuri de neutrini dintr-un accelerator aflat la sediul CERN din apropierea Genevei către un detector aflat la Laboratorul Național Gran Sasso din Italia, la o depărtare de circa 732 de kilometri. Neutrinii sunt particule subatomice elementare, despre care se știe că ar călători, în general, cu o viteză apropiată de cea a luminii, dar asupra cărora nu se înțelege foarte bine cum se aplică conceptul de masă și cel de masă de repaus. Ei sunt
CERN () [Corola-website/Science/311288_a_312617]
-
fără baterii electrice, a calculatoarelor de buzunar și a ceasurilor. Ele sunt fabricate din materiale semiconductoare similare cu cele utilizate în electronică la cipurile semiconductoare din componența dispozitivelor semiconductoare. Când lumina soarelui este absorbită de aceste materiale, cu participarea particulelor subatomice, și fluxul dirijat de electroni ce ia naștere, reprezintă electricitate. Acest proces de conversie a energiei luminii în energie electrică se numește efect fotovoltaic. De aceea, celulele fotovoltaice nu trebuiesc confundate cu alte sisteme de conversie ale energiei solare. Ele
Energie solară fotovoltaică () [Corola-website/Science/312820_a_314149]
-
influențată de la distanță. Pentru a explica evenimentele psihotronice se solicită să se facă apel la cunoștințele de fizica. La începutul secolului anterior, Ernst Schrodinger și Werner Heisenberg au formulat legile de bază ale mecanicii cuantice. Această teorie descrie fizică lumii subatomice. Dr. Bell a elaborat o teorema din mecanica cuantică care afirma că particulele subatomice sau fotonii care s-au obținut prin divizarea în două a unei alte subparticule sau foton vor avea aceleași caracteristici. Teorema lui Bell și conectivitatea între
Psihotronică () [Corola-website/Science/309596_a_310925]
-
la cunoștințele de fizica. La începutul secolului anterior, Ernst Schrodinger și Werner Heisenberg au formulat legile de bază ale mecanicii cuantice. Această teorie descrie fizică lumii subatomice. Dr. Bell a elaborat o teorema din mecanica cuantică care afirma că particulele subatomice sau fotonii care s-au obținut prin divizarea în două a unei alte subparticule sau foton vor avea aceleași caracteristici. Teorema lui Bell și conectivitatea între perechile de subparticule le-a permis oamenilor de știință să transmită informația în condiții
Psihotronică () [Corola-website/Science/309596_a_310925]
-
sistemul de referință aplicabil dacă nu este evident, sau dedus implicit din formularea problemei. Este evident și că creșterea de masă relativistă nu rezultă din creșterea numărului de atomi al obiectului. În schimb, masa relativistă a fiecărui atom și particulă subatomică crește ea însăși. Manualele de fizică folosesc uneori masa relativistă, deoarece ea permite studenților să utilizeze cunoștințele lor de fizică newtoniană pentru a face mai intuitive anumite concepte, restrângându-le la anumite sisteme de referință alese. "Masa relativistă" este consistentă
Teoria relativității restrânse () [Corola-website/Science/310177_a_311506]
-
clasică. În interpretarea standard din mecanica cuantică, starea cuantică, numită și funcția de undă sau vectorul de stare, este cea mai cuprinzătoare descriere care poate fi făcută unui sistem fizic. Soluția ecuației lui Schrödinger descrie nu numai sistemele atomice și subatomice, atomi și electroni, ci și sistemele macroscopice, posibil chiar întregul univers. Ecuația a fost numită astfel după Erwin Schrödinger, cel care a dedus-o în 1926. poate fi matematic transformată în formularea matricială (a mecanicii cuantice) a lui Heisenberg, precum și
Ecuația lui Schrödinger () [Corola-website/Science/305969_a_307298]
-
Primul model de înjumătățire înaintea celor mai stabili izotopi, No este emisia alfa și principalul model după înjumătățire este fisiunea spontană. Principalele produse ale înjumătățirii sunt No , 100 de izotopi ai fermiului și principalele produse de dinainte energia și particulele subatomice.
Nobeliu () [Corola-website/Science/305264_a_306593]
-
de a fi sintetizat, capturat și răcit, împreună cu structura să atomică relativ simplă l-au făcut subiectul unor experimente specializate de spectroscopie. Aceste experimente au dus la informații mai detaliate despre nivelurile de energie și constantele de cuplare dintre particulele subatomice. Studiile pe lumina emisă de ionii de franciu-210 capturați laser au furnizat date precise despre schimburile între nivelurile atomice de energie care sunt destul de asemănătoare cu cele prezise de teoria cuantică. Franciul poate fi sintetizat în urmă reacției nucleare: Acest
Franciu () [Corola-website/Science/305263_a_306592]
-
EPR, numit astfel după autorii săi Albert Einstein, Podolsky și Rosen în 1935. Articolul EPR a subliniat natura stranie a superpoziției cuantice. În linii mari, superpoziția cuantică reprezintă combinarea tuturor stărilor cuantice ale sistemului (de exemplu, pozițiile posibile ale particulelor subatomice). Interpretarea Copenhaga arată că superpoziția decade într-o stare definită exact în momentul în care are loc măsurătoarea cuantică. Schrödinger și Einstein au schimbat mai multe scrisori despre articolul EPR al lui Einstein, în cuprinsul cărora Einstein a subliniat că
Pisica lui Schrödinger () [Corola-website/Science/314058_a_315387]
-
la o scară mai mare a unei pisici vii sau moarte cuplând pisica si atomul cu ajutorul unui ‘‘mecanism diabolic.’’ A propus un scenariu în care viața sau moartea unei pisici aflate într-o cutie închisă depinde de starea unei particule subatomice. Conform lui Schrödinger, interpretarea Copenhaga implică faptul că pisica rămâne în același timp vie și moartă până la deschiderea cutiei. Schrödinger nu a dorit să promoveze ideea unei pisici moartă-și-vie concomitent ca pe o posibilitate serioasă; din contră: experimentul mental servește
Pisica lui Schrödinger () [Corola-website/Science/314058_a_315387]
-
Mecanica cuantică (sau "Teoria cuantică") este o știință a fizicii care se ocupă cu comportamentul materiei și a energiei la scară atomică și a particulelor subatomice / undelor. Mecanica cuantică este esențială în înțelegerea forțelor fundamentale din natură cu excepția gravitației. Mecanica cuantică stă la baza mai multor discipline înrudite, incluzând fizica materiei condensate, electromagnetism, fizica particulelor sau parțial al cosmologiei și este instrumentul principal de investigare în
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
sau unde cu lungimea de undă mai mare precum undele infraroșii, microundele și undele radio. Această descriere conține doar acele unde care călătoresc cu viteza luminii. De asemenea, atunci când mai jos este folosit cuvântul "particulă", acesta referă întotdeuna o particulă subatomică elementară. Fizica clasică arată că radiația unui corp negru produce o energie infinită, însă acest rezultat nu a fost niciodată observat în laborator. Dacă radiația de corp negru este dispersată într-un spectru, atunci cantitatea de energie radiată la frecvențe
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
cu un multiplu întreg al celui de pe orbita de bază. El a descris electronii ca fiind asemănători planetelor aflate pe o orbită solară. Astfel, el a definit constanta lui Planck ca un element fundamental care generează cerințe speciale la nivel subatomic și asta explică spațiul existent între orbitele electronilor. Bohr a considerat o revoluție completă a unui electron pe orbită ca fiind echivalentă unui ciclu dintr-un oscilator și care este similar unui ciclu dintr-o undă. Numărul de revoluții pe
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
acestor descoperiri. În mecanica cuantică, s-a descoperit că ceea ce denumim unde electromagnetice pot reacționa în anumite experimente ca și cum ar fi compuse din particule iar în altele ca și cum ele ar fi doar unde. S-a descoperit de asemenea că particulele subatomice pot uneori fi descrise ca particule iar alteori ca undă. Aceste descoperiri au condus la elaborarea teoriei dualității undă-particulă de către Louis-Victor de Broglie în 1924, care stabilește că la nivel subatomic entitățile prezintă simultan atât proprietăți de particulă cât și
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]