2,024 matches
-
min/mmHg) în repaus; exprimată ca STPD (volume de aer corectate conform condițiilor standard de măsurare: 00 C; 760 mm Hg; aer uscat). In cursul efortului capacitatea pulmonară de difuzie pentru O2 poate ajunge la o valoare 65 datorită dilatației capilare și a creșterii numărului de capilare active. Capacitatea de difuzie a oxigenului este scăzută în boli care determină fibroză a peretelui alveolar, cu blocaj alveolo-capilar. (sarcoidoză, intoxicație cu beriliu, etc.) In sângele venos pCO2 este 46 mm Hg iar în
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
pulmonare însoțesc bronhiile până la nivelul lobulilor secundari; apoi se divid în capilare pulmonare localizate în peretele alveolar. In peretele alveolar capilarele pulmonare formează o rețea densă care participă la schimbul de gaze respiratorii. Sângele oxigenat este colectat de la nivelul patului capilar în vene pulmonare mici care se află pe lângă lobulii pulmonari și se unesc formând patru vene pulmonare mari care se varsă în atriul stâng. Funcția principală a circulației pulmonare este de a asigura curgerea sângelui spre bariera alveolo-capilară pentru a
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
alte funcții importante. Una dintre acestea este de rezervor de sânge. Volumul sanguin de la nivel pulmonar poate crește foarte mult fără creșteri presionale semnificative, datorită complianței mari din acest sector circulator, la care se adaugă mecanismul de recrutare și distensie capilară. O altă funcție este cea de filtru sanguin. Trombii sanguini mici eventual formați în sectorul venos sistemic sunt îndepărtați din circulație înainte ca ei să ajungă la creier sau la alte organe vitale. De asemenea, s-a constatat că multe
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
multe leucocite sunt reținute de către plămân. 19.2.1. Regimul presional și echilibrul Starling la nivel pulmonar Presiunile hidrostatice și coloid-osmotice din ansamblul funcțional bronho-pulmonar au valori ce permit corelația funcțională dintre ventilația alveolară și perfuzia cu sânge a patului capilar pulmonar. Presiunile din vasele sanguine pulmonare Presiunile sunt foarte mici în circulația pulmonară. Presiunea medie în artera pulmonară este de aproximativ 15 mm Hg; presiunile sistolice și diastolice sunt de 25 mm Hg și respectiv, 8 mm Hg (fig. 80
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
are loc o reducere a presiunii menținând în activitate inima dreaptă pentru a asigura schimbul gazos pulmonar. Presiunea în capilarele pulmonare este variabilă; ea se situează la ~ ½ din presiunea arterială și venoasă pulmonară; mai mult presiunea se reduce în patul capilar pulmonar. Cu certitudine presiunea de-a lungul circulației pulmonare este de departe mai simetrică decât în circulația sistemică. In plus, presiunea în capilarele pulmonare variază considerabil datorită efectelor hidrostatice. Presiunea din jurul vaselor sanguine pulmonare Capilarele pulmonare sunt unice; ele sunt
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
expuse la presiunea intrapleurală. Balanța hidrică de la nivel pulmonar Deși numai 0,5 μm de țesut separă sângele din capilare de aerul din alveolele pulmonare, problema menținerii alveolelor libere de lichid este critică. Schimbul de lichide de-a lungul peretelui capilar se realizează conform echilibrului Starling. Forța care are tendința de a împinge afară lichidul din capilare este presiunea hidrostatică capilară minus presiunea hidrostatică a lichidului interstițial (). Forța care are tendința de a introduce lichid în capilar este presiunea coloid osmotică
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
de aerul din alveolele pulmonare, problema menținerii alveolelor libere de lichid este critică. Schimbul de lichide de-a lungul peretelui capilar se realizează conform echilibrului Starling. Forța care are tendința de a împinge afară lichidul din capilare este presiunea hidrostatică capilară minus presiunea hidrostatică a lichidului interstițial (). Forța care are tendința de a introduce lichid în capilar este presiunea coloid osmotică a proteinelor din sânge minus presiunea coloid osmotică a proteinelor din lichidul interstițial (). Mărimea acestei forțe depinde de coeficientul de
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
Forța care are tendința de a introduce lichid în capilar este presiunea coloid osmotică a proteinelor din sânge minus presiunea coloid osmotică a proteinelor din lichidul interstițial (). Mărimea acestei forțe depinde de coeficientul de reflexie (δ) care indică eficacitatea peretelui capilar în prevenirea trecerii proteinelor prin el. Astfel, ieșirea netă de lichid este K [], unde K = coeficient de filtrare. Utilizarea practică a acestei ecuații este limitată datorită ignoranței noastre asupra multor valori. Presiunea coloid osmotică din interiorul capilarului este de 28
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
prin el. Astfel, ieșirea netă de lichid este K [], unde K = coeficient de filtrare. Utilizarea practică a acestei ecuații este limitată datorită ignoranței noastre asupra multor valori. Presiunea coloid osmotică din interiorul capilarului este de 28 mm Hg. Presiunea hidrostatică capilară este aproape de media dintre presiunea arterială și venoasă, dar este mult mai mare la baza plămânului în comparație cu cea de la vârf. Presiunea coloidosmotică din spațiul interstițial nu este cunoscută, dar este aproape 20 mm Hg în limfa pulmonară. Totuși, această valoare
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
scăzută nu este pe deplin cunoscut, dar probabil aceasta este produsă prin diferențele de geometrie de rețea și prin prezența canalelor preferențiale de curgere a sângelui. Pe lângă deschiderea capilarelor, creșterea presiunii intravasculare poate duce la o creștere a calibrului. Distensia capilară pare a fi mecanismul principal pentru scăderea rezistenței vasculare pulmonare produse de o presiune intra-vasculară crescută. Rezistența vasculară a circulației sistemice este crescută în condiții bazale și prin constricția arteriolelor musculare datorită tonusului simpatic. Circulația pulmonară nu prezintă acest
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
influențează debitul decât dacă depășește presiunea alveolară. In zona 3 presiunea venoasă depășește presiunea alveolară și debitul este determinat în mod normal prin diferența presională arterio venoasă. Creșterea debitului sanguin în această regiune pulmonară este produsă în principal de distensia capilară. Presiunea din interiorul capilarelor (situată între cea arterială și venoasă) crește în partea inferioară a acestei zone, cu toate că presiunea din afară (alveolară) rămâne constantă. Recrutarea de vase în prealabil închise poate de asemeni juca un rol important în creșterea debitului
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
cunoscut al activării biologice ca urmare a trecerii prin circulația pulmonară este conversia angiotensinei I (un polipeptid relativ inactiv) în angiotensină II (un vasoconstrictor puternic) de către enzima de conversie a angiotensinei (ECA), care se găsește la nivelul caveolelor celulelor endoteliale capilare. Multe substanțe vasoactive sunt complet sau parțial inactivate în cursul trecerii lor prin plămân. Bradikinina este puternic inactivată (peste 80%), iar enzima responsabilă este ECA. Plămânul este locul de inactivare a serotoninei, dar acestă inactivare nu este o degradare enzimatică
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
pot afecta puternic conținutul în oxigen al sângelui arterial și cantitatea de oxigen disponibilă la țesuturi. Porțiunea inferioară a curbei are o pantă mare și arată că țesuturile pot extrage cantități mari de O2 pentru fiecare mică scădere a pO2 capilară. Cantitatea maximă de O2 care poate fi combinată cu Hb se numește capacitatea Hb de legare a O2. Un gram de Hb pură poate lega 1,39 ml O2. Deoarece sângele normal conține Hb în cantitate de ~15 g/dl
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
cu presiunile lor parțiale. Evenimentele implicate în transportul bioxidului de carbon în sânge au efect foarte important asupra statusului acidobazic din organism. 20.3. Schimbul de gaze respiratorii la nivel tisular Oxigenul și bioxidul de carbon se deplasează între sângele capilar și țesuturi prin difuziune din regiunile cu presiuni mari în zonele cu presiuni mici (tab. 12). Principiul care guvernează difuziunea este legea Fick; trebuie subliniat că distanța care va fi acoperită prin difuziune în țesuturile periferice este considerabil mai mare
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
grosimea barierei sânge-gaz în plămân este numai de 1/100 din aceasta. Pe de altă parte, în timpul efortului, când consumul de oxigen din țesutul muscular este crescut, creșterea numărului de capilare deschise reduce distanța de difuziune și crește suprafața parietală capilară disponibilă pentru difuziune. Bioxidul de carbon difuzează de ~ 20 ori mai rapid decât oxigenul în țesut, eliminarea bioxidului de carbon reprezintă o problemă minoră în comparație cu eliberarea de oxigen. Măsurători in vitro sugerează că mișcarea oxigenului prin anumite țesuturi este prea
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
gaze are loc la nivelul capilarelor tisulare (fig. 89, după West D. J.), după cum urmează: sângele arterial cedează O2 necesar activităților celulare și preia bioxidul de carbon rezultat în urma metabolismului celular. Schimbul tisular de gaze la se desfășoară prin peretele capilar, lichidul interstițial și membrana celulară și constă în procese fizice de difuziune a gazelor respiratorii ca urmare a gradientelor de presiune parțială între sectoarele traversate. Factorii de care depinde rata de difuziune (D) sunt cuprinși în ecuația Fick, . Schimbul gazos
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
renale urmează riguros același traseu și același model de ramificare. Venele interlobulare primesc sângele drenat de la nefroni, se unesc în venele arcuate, apoi formează venele interlobare ce se vor uni în vena renală. 23.1. Microvascularizația Rinichiul are trei rețele capilare distincte, fiecare cu o funcție aparte. Arteriolele aferente și capilarele glomerulare. Fiecare glomerul primește sânge de la o arteriolă aferentă, ce-și are originea în arterele interlobulare. Peretele arteriolei aferente prezintă celule musculare netede specializate, care împreună cu macula densa ce aparține
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
arteriola aferentă. Capilare sunt alcătuite din celule endoteliale cu perforații, numite fenestrații, care rețin celulele sanguine dar permit filtrarea plasmei. Fiecare celulă endotelială are aspectul unui disc turtit, cu foarte multe perforații, rulat în formă cilindrică pentru a forma peretele capilar. Capilarele glomerulare sunt foarte permeabile, permițând unei procent mare din plasmă să fie filtrată către spațiul capsular (fig. 95). Acoperind la exterior endoteliul capilar este membrana bazală. Aceasta reprezintă fuzionarea dintre membrana bazală endotelială și cea a epiteliului glomerular și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
aspectul unui disc turtit, cu foarte multe perforații, rulat în formă cilindrică pentru a forma peretele capilar. Capilarele glomerulare sunt foarte permeabile, permițând unei procent mare din plasmă să fie filtrată către spațiul capsular (fig. 95). Acoperind la exterior endoteliul capilar este membrana bazală. Aceasta reprezintă fuzionarea dintre membrana bazală endotelială și cea a epiteliului glomerular și este alcătuită dintr-o rețea tridimensională laxă de colagen și fibrile proteoglicanice, prin orificiile căreia se filtrează mari cantități de apă și solviți cu
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
implică ultrafiltrarea plasmei. Termenul de ultrafiltrare reflectă faptul că membrana filtrantă este un filtru molecular extrem de fin, ce permite filtrarea apei și a moleculelor mici, dar reduce trecerea macromoleculelor. Membrana glomerulară este o barieră filtrantă cu trei componente: peretele endoteliului capilar, ale cărui fenestrații permit trecerea plasmei, dar rețin elementele figurate, membrana bazală glomerulară, filtru electrostatic, cu pori ce rețin particulele mai mari de 6-8 nm, fantele de filtrare dintre pedicelele podocitelor, echipate cu nefronă, ce reduc dimensiunea particulelor filtrate sub
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
este membrana bazală, urmată de diafragma fantelor de filtrare. Filtrarea glomerulară depinde de echilibrul dintre presiunile hidrostatice și osmotice ce acționează pe membrana filtrantă, denumite generic forțele Starling. Presiunea din capilarele glomerulare este mai mare decât cea din alte paturi capilare, deoarece arteriolele aferente sunt scurte și drepte, iar vasele din avalul glomerulului, arteriolele eferente, prezintă o rezistență relativ mare. Presiunea hidrostatică medie într-un capilar glomerular este mult mai mare (55 vs. 25 mm Hg) decât într-un capilar din
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
vasele din avalul glomerulului, arteriolele eferente, prezintă o rezistență relativ mare. Presiunea hidrostatică medie într-un capilar glomerular este mult mai mare (55 vs. 25 mm Hg) decât într-un capilar din alte organe, de exemplu mușchiul scheletic. Presiunea hidrostatică capilară scade puțin (1 2 mm Hg) de-a lungul capilarului glomerular, deoarece există mai multe anse capilare în paralel (3050), ceea ce face ca rezistența la curgere să fie extrem de redusă. Presiunea intracapilară depinde în ultimă instanță de presiunea arterială sistemică
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
glomerular este mult mai mare (55 vs. 25 mm Hg) decât într-un capilar din alte organe, de exemplu mușchiul scheletic. Presiunea hidrostatică capilară scade puțin (1 2 mm Hg) de-a lungul capilarului glomerular, deoarece există mai multe anse capilare în paralel (3050), ceea ce face ca rezistența la curgere să fie extrem de redusă. Presiunea intracapilară depinde în ultimă instanță de presiunea arterială sistemică. Presiunii hidrostatice de la nivelul capilarelor (PH) i se opune presiunea hidrostatică din capsula Bowman (PIC) precum și gradientul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
arteriola eferentă. Vasodilatația arteriolei aferente crește fluxul sanguin la glomerul, ceea ce va crește GFR. Vasoconstricția arteriolei aferente va reduce fluxul glomerular, ceea ce va reduce filtrarea. Vasoconstricția arteriolei eferente crește presiunea glomerulară și crește filtrarea, în vreme ce vasodilatația acesteia va reduce presiunea capilară glomerulară și va reduce GFR. Efectele la nivelul arteriolei eferente sunt însă de mică amploare. Modificările de diametru al arteriolelor aferente pot apărea ca urmare atât a mecanismelor extrinseci de reglare (inervație simpatică) sau prin mecanismele intrinseci, ce realizează fenomenul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
fenomen de „solvent drag”. Odată ajunsă în interstițiu, apa se reabsoarbe extrem de rapid prin capilarele peritubulare, deoarece sângele de la acest nivel este același sânge care a trecut prin glomerul și care are o presiune osmotică crescută datorită rămânerii în lumenul capilar a proteinelor plasmatice ce nu au putut trece prin filtrul glomerular. Glucoza și substanțele înrudite precum acetoacetații, acidul ascorbic, β-hidroxi butiratul, carboxilatul, lactatul, piruvatul, precum și aminoacizii și vitaminele se reabsorb în aceeași manieră, printr-un transport activ secundar al cărui
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]