2,207 matches
-
Există izotopi ai bromului care se dezintegrează în mai multe moduri, de exemplu formula 21 care se dezintegreză cu probabilitatea de 91,7% prin formula 9 în formula 23 și cu probabilitatea de 8,3%, prin formula 8, în formula 25. De asemenea, începând cu izotopul formula 18, toți izotopii dezintegrează, pe lângă dezintegrarea formula 8, și prin emisie de neutroni. Prezența în natură, în proporție extrem de scăzută, a radioizotopilor bromului și timpii de înjumătățire de valori mici ai acestora, face nesemnificativă contribuția radiațiilor emise de aceștia la fondul
Brom () [Corola-website/Science/302790_a_304119]
-
bromului care se dezintegrează în mai multe moduri, de exemplu formula 21 care se dezintegreză cu probabilitatea de 91,7% prin formula 9 în formula 23 și cu probabilitatea de 8,3%, prin formula 8, în formula 25. De asemenea, începând cu izotopul formula 18, toți izotopii dezintegrează, pe lângă dezintegrarea formula 8, și prin emisie de neutroni. Prezența în natură, în proporție extrem de scăzută, a radioizotopilor bromului și timpii de înjumătățire de valori mici ai acestora, face nesemnificativă contribuția radiațiilor emise de aceștia la fondul natural de radiații
Brom () [Corola-website/Science/302790_a_304119]
-
ul (, "iodes", însemnând „violet”) este un element chimic, notat cu simbolul I, cu numărul atomic 53. Are un singur izotop natural stabil, cu masa atomică relativă 127, al cărui nucleu conține 74 de neutroni. ul este al patrulea element din grupa halogenilor, posedă o reactivitate slabă și o electropozitivitate ridicată. Ca substanță elementară, la fel ca toți halogenii, iodul prezintă
Iod () [Corola-website/Science/302791_a_304120]
-
care avea să afirme că iodul este un element chimic nou, fiind cel care i-a dat numele actual, de la grecescul "iodes", ce înseamnă „violaceu”. Structura atomului de iod este determinată de numărul nucleonilor din nucleul atomic, astfel că pentru izotopul său natural, I, iodul are 53 de protoni și 74 de neutroni. Numărul neutronilor poate varia de la 55 până la 91, în funcție de izotop. Raza atomică medie este de 140Å, iar volumul molar al iodului chimic pur, în condiții fizice normale, este
Iod () [Corola-website/Science/302791_a_304120]
-
ce înseamnă „violaceu”. Structura atomului de iod este determinată de numărul nucleonilor din nucleul atomic, astfel că pentru izotopul său natural, I, iodul are 53 de protoni și 74 de neutroni. Numărul neutronilor poate varia de la 55 până la 91, în funcție de izotop. Raza atomică medie este de 140Å, iar volumul molar al iodului chimic pur, în condiții fizice normale, este de 25,74 cm³/mol. Raza covalentă este de 1,33Å. Configurația electronică a atomului de iod este prezentată in tabelul din stânga
Iod () [Corola-website/Science/302791_a_304120]
-
de 140Å, iar volumul molar al iodului chimic pur, în condiții fizice normale, este de 25,74 cm³/mol. Raza covalentă este de 1,33Å. Configurația electronică a atomului de iod este prezentată in tabelul din stânga. Iodul are 37 de izotopi, dintre care doar unul este stabil, I. Izotopul I este similar celui de clor, Cl. Este un halogen solubil, nereactiv, existând ca anion și produs de reacții cosmogenice și termonucleare. În studiile hidrologice, concentrațiile de I sunt raportate la cantitatea
Iod () [Corola-website/Science/302791_a_304120]
-
pur, în condiții fizice normale, este de 25,74 cm³/mol. Raza covalentă este de 1,33Å. Configurația electronică a atomului de iod este prezentată in tabelul din stânga. Iodul are 37 de izotopi, dintre care doar unul este stabil, I. Izotopul I este similar celui de clor, Cl. Este un halogen solubil, nereactiv, existând ca anion și produs de reacții cosmogenice și termonucleare. În studiile hidrologice, concentrațiile de I sunt raportate la cantitatea totală de iod (care ar fi cea de
Iod () [Corola-website/Science/302791_a_304120]
-
I este similar celui de clor, Cl. Este un halogen solubil, nereactiv, existând ca anion și produs de reacții cosmogenice și termonucleare. În studiile hidrologice, concentrațiile de I sunt raportate la cantitatea totală de iod (care ar fi cea de izotop natural I). Asemenea raportului Cl/Cl, I/I este întâlnit în proporții mici în mostrele naturale. I diferă de Cl prin timpul de înjumătățire, care este mai lung decât cel al clorului (15,7 milioane de ani față de 0,301
Iod () [Corola-website/Science/302791_a_304120]
-
raportului Cl/Cl, I/I este întâlnit în proporții mici în mostrele naturale. I diferă de Cl prin timpul de înjumătățire, care este mai lung decât cel al clorului (15,7 milioane de ani față de 0,301 milioane de ani). Izotopul natural are un caracter biofilic pronunțat, apărând în multiple forme ionice (în mod obișnuit, I și ionul iodat IO) ce au caractere chimice diferite. Acest lucru face ca I să fie asimilat mai ușor în biosferă prin asimilarea acestuia în
Iod () [Corola-website/Science/302791_a_304120]
-
ce au caractere chimice diferite. Acest lucru face ca I să fie asimilat mai ușor în biosferă prin asimilarea acestuia în vegetație, sol, lapte, țesuturi animale etc. Excesul de Xe stabil din meteoriți a fost clasificat ca rezultat al dezintegrării izotopului I, produs de supernove, ce a creat praful interstelar și gazele din care este alcătuit sistemul solar. I a fost primul radionuclid dispărut care a fost identificat în sistemul solar timpuriu. Stadiul dezintegrării sale se află la baza datării radiometrice
Iod () [Corola-website/Science/302791_a_304120]
-
supernove, ce a creat praful interstelar și gazele din care este alcătuit sistemul solar. I a fost primul radionuclid dispărut care a fost identificat în sistemul solar timpuriu. Stadiul dezintegrării sale se află la baza datării radiometrice a sistemului de izotopi I-Xe (Iod-xenon), care acoperă o perioadă de 85 de milioane de ani din evoluția sistemului solar. Stabilirea raportului izotopic iod-xenon permite stabilirea vârstei aproximative a mineralelor din scoarța terestră sau din meteoriți. Iodul este relativ răspândit în natură, fiind
Iod () [Corola-website/Science/302791_a_304120]
-
radioopac. Compușii organici de un anume tip (derivați benzenici ce substituie iodul) sunt utilizați în medicină ca radiocontrastant al radiațiilor X pentru injecțiile intravenoase. Această tehnică este asemănătoare cu tehnicile avansate ale utilizării radiațiilor X precum angiografia și tomografia. Unii izotopi radioactivi ai iodului pot fi utilizați în tratarea cancerului tiroidian. Organismul uman acumulează iod în tiroidă, iar izotopii iodului radioactiv pot distruge țesutul afectat de cancer în mod selectiv, în timp ce doza radioactivă rămâne mică pentru restul organismului. În 1839 Louis
Iod () [Corola-website/Science/302791_a_304120]
-
al radiațiilor X pentru injecțiile intravenoase. Această tehnică este asemănătoare cu tehnicile avansate ale utilizării radiațiilor X precum angiografia și tomografia. Unii izotopi radioactivi ai iodului pot fi utilizați în tratarea cancerului tiroidian. Organismul uman acumulează iod în tiroidă, iar izotopii iodului radioactiv pot distruge țesutul afectat de cancer în mod selectiv, în timp ce doza radioactivă rămâne mică pentru restul organismului. În 1839 Louis Daguerre își publicase metoda de fotografiere, prin așa numita metodă a dagherotipiei. Imaginea era produsă pe o placă
Iod () [Corola-website/Science/302791_a_304120]
-
proprietăți ale metalului sunt rezistența la coroziune și rația duritate-greutate cea mai mare dintre toate metalele. În starea sa pură, titanul este la fel de dur ca unele tipuri de oțel, dar cu 45% mai ușor. Sunt două forme alotropice și cinci izotopi naturali ai acestui element; de la Ti până la Ti, cu Ti fiind cel mai abundent (73,8%). Proprietățile titanului sunt similare chimic și fizic cu cele ale zirconiului. Titanul a fost descoperit fiind inclus într-un mineral din Cornwall, Anglia, în
Titan () [Corola-website/Science/303225_a_304554]
-
Sub condiții de căldură și presiune, pudra poate fi folosită pentru a crea obiecte puternice și ușoare, ce variază de la blindaj la componentele pentru aerospațiu, transport și industriile de procesare chimică. «==Structură atomică puro-condensatoare==» Titanul natural este compus din cinci izotopi stabili: Ti, Ti, Ti, Ti și Ti, cu Ti fiind cel mai abundent (73,8% abundență naturală). Au fost sintetizați artificial unsprezece radioizotopi, cei mai stabili fiind Ti cu un timp de înjumătățire de 63 de ani, Ti cu timpul
Titan () [Corola-website/Science/303225_a_304554]
-
ani, Ti cu timpul de înjumătățire de 184,8 minute, Ti cu 5,76 minute și Ti cu 1,7 minute. Ceilalți radioizotopi îl au mai puțin de 33 de secunde, iar majoritatea sunt mai mici decât jumate de secundă. Izotopii titanului variază în masă atomică, de la 39,9 u (Ti) la 57,966 u (Ti). Modul primar de dezintegrare înainte de cel mai abundent izotop stabil, Ti, este captura de electroni, iar modul primar de după acesta este radiația beta. Principalele produse
Titan () [Corola-website/Science/303225_a_304554]
-
au mai puțin de 33 de secunde, iar majoritatea sunt mai mici decât jumate de secundă. Izotopii titanului variază în masă atomică, de la 39,9 u (Ti) la 57,966 u (Ti). Modul primar de dezintegrare înainte de cel mai abundent izotop stabil, Ti, este captura de electroni, iar modul primar de după acesta este radiația beta. Principalele produse de dezintegrare dinainte de Ti sunt izotopii elementului 21, iar de după sunt izotopii elementului 23. Un element chimic metalic, titanul este recunoscut pentru rația sa
Titan () [Corola-website/Science/303225_a_304554]
-
de la 39,9 u (Ti) la 57,966 u (Ti). Modul primar de dezintegrare înainte de cel mai abundent izotop stabil, Ti, este captura de electroni, iar modul primar de după acesta este radiația beta. Principalele produse de dezintegrare dinainte de Ti sunt izotopii elementului 21, iar de după sunt izotopii elementului 23. Un element chimic metalic, titanul este recunoscut pentru rația sa duritate-greutate mare. Este un metal dur cu densitate mică, care este destul de ductil (în special în mediile fără oxigen), lucios și alb
Titan () [Corola-website/Science/303225_a_304554]
-
57,966 u (Ti). Modul primar de dezintegrare înainte de cel mai abundent izotop stabil, Ti, este captura de electroni, iar modul primar de după acesta este radiația beta. Principalele produse de dezintegrare dinainte de Ti sunt izotopii elementului 21, iar de după sunt izotopii elementului 23. Un element chimic metalic, titanul este recunoscut pentru rația sa duritate-greutate mare. Este un metal dur cu densitate mică, care este destul de ductil (în special în mediile fără oxigen), lucios și alb argintiu în culoare. Temperatura relativ ridicată
Titan () [Corola-website/Science/303225_a_304554]
-
și are proprietăți fizico-chimice asemănătoare cu cele ale rubidiului și ale potasiului. Metalul este foarte reactiv și piroforic, reacționând cu apa la o temperatură de cel puțin −116 °C (−177 °F). Este elementul cu cea mai mică electronegativitate având un izotop stabil (Cesiu-133). Metalul este extras din polucit, în timp ce radioizotopii (în special cesiu-137) sunt extrase din produșii de fisiune în reactoare nucleare. Cesiul a fost descoperit de către doi chimiști germani, Robert Bunsen și Gustav Kirchhoff în anul 1860 cu ajutorul liniei sale
Cesiu () [Corola-website/Science/304474_a_305803]
-
liniei sale spectroscopice. Prima utilizare pe scară redusă a elementului a fost cea de "reducător" (sau "getter") în tuburi cu vid și în celule fotoelectrice. În 1967, perioada specifică de tranziție între cele două niveluri hiperfine ale stării fundamentale ale izotopului cesiu-133 a fost ales de către Sistemul internațional de unități la baza definirii etalonului pentru secunda. Încă de atunci, cesiul a fost utilizat, pe scară largă, ca "oscilator cuantic" pentru ceasuri atomice. Din anii 1990, cea mai însemnată utilizare a elementului
Cesiu () [Corola-website/Science/304474_a_305803]
-
în producerea electricității, în aparate electronice și în chimie. Radioizotopul cesiu-137 are un timp de înjumătățire de aproximativ 30 de ani și este folosit în medicină, măsurători și hidrologie. Deși elementul nu este foarte toxic, este periculos și exploziv, iar izotopii săi prezintă un risc ridicat în caz de scurgere radioactivă. În 1860, Robert Bunsen și Gustav Kirchhoff au descoperit cesiul în apa minerală provenită din Dürkheim, Germania. Datorită liniilor spectroscopice de culoare albastră intensă, cesiul și-a primit numele după
Cesiu () [Corola-website/Science/304474_a_305803]
-
acestea se asemănă cu cele ale rubidiului, elementul chimic situat deasupra cesiului în tabelul periodic al elementelor. Însă, pot apărea mici diferențe între proprietățile chimice datorită masei atomice și a electropozitivității foarte mari. Cesiul este cel mai electropozitiv element cu izotopi stabili. Ionii de cesiu sunt, de asemenea, grei și mai puțin duri decât al ionilor de metale alcaline. Cea mai mare parte a compușilor cesiului conțin cationul Cs ce se poate combina prin legături ionice cu un mare număr de
Cesiu () [Corola-website/Science/304474_a_305803]
-
poate fi încălzit sub vid pentru a genera CsO. Sunt cunoscuți, de asemenea, și compuși ai cesiului cu sulful, seleniul și telurul, dar sunt foarte puțin studiați și nu există date referitoare la aceștia. În total, se cunosc 39 de izotopi de cesiu ce oscilează între valorile de 112 și 151 în masa atomică. Câteva dintre aceștia pot fi sintetizați cu ajutorul elementelor mai ușoare; în natură, aceste reacții au loc și în timpul procedeelor din interiorul stelelor bătrâne, precum și în interiorul supernovelor. Totuși
Cesiu () [Corola-website/Science/304474_a_305803]
-
cesiu ce oscilează între valorile de 112 și 151 în masa atomică. Câteva dintre aceștia pot fi sintetizați cu ajutorul elementelor mai ușoare; în natură, aceste reacții au loc și în timpul procedeelor din interiorul stelelor bătrâne, precum și în interiorul supernovelor. Totuși, singurul izotop stabil este Cs, ce are 78 de neutroni. Deși acesta are un spin nuclear ridicat (7/2+), studiile rezonanței magnetice nucleare pot fi făcute la o frecvență de rezonanță de 11,7 MHz. Izotopul radioactiv Cs are un timp de
Cesiu () [Corola-website/Science/304474_a_305803]