8,529 matches
-
activi de schimb ionic. Lignina, al treilea component major al peretelui celular al lemnului este un material polimeric. Molecula de lignină este constituită dintr-un nucleu de fenilpropan. Vanilina și aldehida siringilică sunt alte două unități structurale de bază ale moleculei de lignină. Conținutul de lignină al lemnului de esență tare este de obicei în domeniul 18-25%, în timp ce pentru lemnul de esență moale variază între 25% și 30%. Taninurile sunt fenoli complecși polihidroxilici, care sunt solubili în apă și au proprietatea
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
pentru aceeași concentrație inițială a colorantului. Analiza chimică a rumegușului de Azadirachta indica (Khattri și Singh, 2009) a stabilit constituenții majori celuloza și lignina. Lignina și celuloza din acești sorbenți naturali, având grupări polare, sunt în principal responsabile pentru adsorbția moleculelor polare. Spectrul IR (Figura 3.13) prezintă o bandă intensă la 3427 cm-1, corespunzătoare vibrației de întindere pentru grupările OH. Banda de absorbție la 2924 cm-1 se datorează contribuției vibrației de întindere C-H. Vibrația de întindere la 1637 cm-1
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
aceste grupe devin încărcate negativ și sunt situsuri probabile pentru reacția chimică la suprafața rumegușului. Aceste grupe funcționale sunt răspunzătoare de capacitatea de schimb cationic a rumegușului. Coloranții bazici, pe de altă parte, pot ioniza în apă cu formarea unei molecule încărcată negativ. Rumegușul de Mansonia poate fi reprezentat în două moduri și este posibil ca adsorbția de bază să urmeze mecanismul următor: MS- + BD+ MSBD (BD)22+ + 2MSH (BD)2(MS)2 + 2H+ în care, BD este colorantul bazic, MS-
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
2H+ în care, BD este colorantul bazic, MS- și MSH sunt situsurile polare la suprafața rumegușului de Mansonia. Aceste reacții stau la baza modelului de pseudo-ordin doi, care presupune că etapa determinantă de viteză este adsorbția chimică sau chimiosorbția. Mărimea moleculelor de colorant și capacitatea lor de a forma specii încărcate influențează adsorbția acestora pe adsorbent. Sarcina pozitivă a Albastrului de metilen este pe atomul de sulf. Încărcarea pozitivă este creată prin extragerea perechii de electroni liberi ai atomului de sulf
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
mai stabilizată decât sarcina pozitivă a azotului și va prezenta o afinitate mai mare pentru sarcina negativă a rumegușului. Cantitatea de colorant adsorbit și constantele vitezei de adsorbție sunt mai mari pentru Albastru de metilen, comparativ cu Metil violet. Mărimea moleculei de colorant influențează de asemenea cantitatea de colorant adsorbit. De exemplu, cantitatea de colorant necesară pentru a ocupa o suprafață dată este mai mică atunci când mărimea moleculei de colorant este mai mare. Aceasta poate reprezenta cauza trecerii de la un mecanism
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
adsorbție sunt mai mari pentru Albastru de metilen, comparativ cu Metil violet. Mărimea moleculei de colorant influențează de asemenea cantitatea de colorant adsorbit. De exemplu, cantitatea de colorant necesară pentru a ocupa o suprafață dată este mai mică atunci când mărimea moleculei de colorant este mai mare. Aceasta poate reprezenta cauza trecerii de la un mecanism de adsorbție la altul după 15 min pentru Metil violet și 30 min pentru Albastru de metil. Molecula de Metil violet este mai mare și va ocupa
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
ocupa o suprafață dată este mai mică atunci când mărimea moleculei de colorant este mai mare. Aceasta poate reprezenta cauza trecerii de la un mecanism de adsorbție la altul după 15 min pentru Metil violet și 30 min pentru Albastru de metil. Molecula de Metil violet este mai mare și va ocupa o suprafață dată mai rapid decât molecula de Albastru de metilen, care este mai mică. Modelul Boyd aplicat pentru a investiga mecanismul de adsorbție a colorantului Verde malachit pe rumeguș de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
poate reprezenta cauza trecerii de la un mecanism de adsorbție la altul după 15 min pentru Metil violet și 30 min pentru Albastru de metil. Molecula de Metil violet este mai mare și va ocupa o suprafață dată mai rapid decât molecula de Albastru de metilen, care este mai mică. Modelul Boyd aplicat pentru a investiga mecanismul de adsorbție a colorantului Verde malachit pe rumeguș de ratan (Hameed și El-Khaiary, 2008b), prin reprezentarea Bt funcție de timp, conduce la o porțiune neliniară la
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
adsorbit se poate estima aria suprafeței specifice Ss, pentru un anumit colorant: (3.2) în care Ss reprezintă aria suprafeței specifice (m2 g-1 sorbent), F fracțiunea de colorant în produsul comercial, NA numărul lui Avogadro; A aria secțiunii transversale a moleculei de colorant, MW masa molară a colorantului (g mol-1). Astfel, pentru Acid Blue 25, cu aria secțiunii transversale de 80 Å2, s-au obținut următoarele valori ale ariei suprafeței specifice: 13,3 (nuc); 11,5 (cireș), 10,0 (stejar), 9
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
celuloza din rumeguș (Odochian și al., 2007). Natura legăturilor implicate în reținerea coloranților a fost de asemenea investigată prin analiza FTIR, care evidențiază că reținerea coloranților pe celuloză se realizează prin legături de hidrogen între grupele NH, respectiv OH din molecula de colorant și atomii de oxigen ai celulozei. Implicarea electronilor neparticipanți ai atomilor de azot și respectiv oxigen ai acestor grupe în conjugarea electronică extinsă cu nucleele aromatice influențează puternic capacitatea grupelor amino, respectiv hidroxil de a forma legături de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
dependentă de pH. La valori mici de pH, cantitatea de colorant adsorbit este de 2,75 mg g-1 pentru Albastru de metilen și 0,01 mg g-1 pentru Metil violet. Diferența în cantitatea adsorbită poate fi atribuită diferenței în mărimea moleculelor de colorant și capacitatea de a stabiliza încărcarea pozitivă a moleculelor de colorant prin efectul inductiv -I al nucleelor benzenice. Cu creșterea pH-ului soluției la 6, gradul de adsorbție se intensifică rapid pentru ambii coloranți și între 6-9,95
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
adsorbit este de 2,75 mg g-1 pentru Albastru de metilen și 0,01 mg g-1 pentru Metil violet. Diferența în cantitatea adsorbită poate fi atribuită diferenței în mărimea moleculelor de colorant și capacitatea de a stabiliza încărcarea pozitivă a moleculelor de colorant prin efectul inductiv -I al nucleelor benzenice. Cu creșterea pH-ului soluției la 6, gradul de adsorbție se intensifică rapid pentru ambii coloranți și între 6-9,95 capacitatea de sorbție crește de la 10,25 la 28,47 mg
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
fi interacțiunea particulelor, cum ar fi aglomerarea, rezultată din doza mare de adsorbent. Asemenea aglomerare ar conduce la scăderea ariei suprafeței totale a adsorbentului și creșterea grosimii stratului de difuzie. Interacțiunea particulelor poate de asemenea contribui la desorbția unora dintre moleculele de adsorbat care sunt legate doar ușor și reversibil la suprafața rumegușului. Procesul de adsorbție a colorantului Verde malachit pe rumeguș de lemn de trandafir indian crește de la 18,6% la 86,9% cu creșterea dozei de adsorbent de la 0
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
KCl 1,5% este de 46%. Același efect este produs în cazul prezenței NaCl și a surfactantului. O asemenea comportare poate fi anticipată datorită atracției între suprafață și soluții adăugați care pot bloca unele dintre situsurile de adsorbție active pentru moleculele de colorant. În acest mod, adsorbentul regenerat poate fi utilizat ulterior pentru a îndepărta colorantul din efluent. Influența concentrației sărurilor (NaCl, CaCl2) asupra adsorbției unor coloranți pe talașul tratat de Picea abies (Janoš și al., 2009) a fost urmărită în
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
nu este afectată de prezența surfactanților anionic și neionic și crește ușor în prezența surfactantului cationic. 3.2.3.5. Influența temperaturii Temperatura are un efect important asupra procesului de adsorbție. Cu creșterea temperaturii se mărește viteza de difuzie a moleculelor de adsorbat prin stratul limită extern și porii interni ai particulelor de adsorbent. Modificarea temperaturii va schimba capacitatea de adsorbție a adsorbentului pentru un anumit adsorbat. În ceea ce privește efectul temperaturii, procentul de îndepărtare a Verdelui malachit cu rumeguș de Azadirachta indica
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
temperaturii, procentul de îndepărtare a Verdelui malachit cu rumeguș de Azadirachta indica scade de la 83,57% la 65,83% odată cu creșterea temperaturii de la 25 la 45șC, ceea ce indică un proces exoterm (Khattri și Singh, 2009). Aceasta se poate datora tendinței moleculelor de colorant de a se elibera din faza solidă în soluție odată cu creșterea temperaturii soluției. Variația gradului de adsorbție cu temperatura poate fi explicată pe baza modificării potențialelor chimice, care sunt legate de solubilitatea speciilor de adsorbat, care este mai
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de reținere a coloranților anionici. Aceasta arată că prezența situsurilor de adsorbție accesibile (a) îmbunătățește accesibilitatea și reactivitatea substratului utilizat, favorizând reținerea colorantului; ( b) îmbunătățește capacitatea de umflare a substratului modificat și permite difuzia și penetrarea anionilor colorantului și/sau moleculelor în structura celulozei și (c) furnizează situsuri active pozitive și astfel face posibilă adsorbția unui număr mare de anioni din soluția colorantului (Ibrahim și al., 1997). Rumegușul de Picea abies cu grupări aminice cuaternare are o capacitate mai mare de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
metode. Alegerea metodei depinde de factori cum ar fi mărimea particulelor, stabilitatea termică și stabilitatea chimică. Dintre aceste metode se pot aminti: - funcționalizarea cu compuși chimici (funcționalizarea în emulsie simplă, în emulsie multiplă, precipitare/funcționalizare); - funcționalizare și interacțiuni cu ioni, molecule și polimeri (gelifiere ionotropă, inversie în fază umedă, emulsifiere și gelifiere ionotropă, emulsifiere și evaporarea solventului, coacervare simplă sau complexă); - metode variate (funcționalizare termică, metoda evoporării solventului, metoda neutralizării, uscarea prin pulverizare, uscarea prin înghețare, depunere, acilare interfacială). Practic, aceste
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
1996) au dezvoltat sinteza unui nou derivat de β-CD-chitosan prin modificarea covalentă a carboximetil-β-CD cu chitosan și care are capacitatea de a forma un complex de incluziune. Această proprietate a fost studiată utilizând un colorant fluorescent (6-(p-toluidin)-2-naftalen-6-sulfonat, ca moleculă „guest”. Polimerul host având grupări aminice libere pe catena de chitosan recunoaște molecula de colorant atât prin interacțiune ionică, cât și complexare host-guest. β-CD a fost cuplată cu chitosan prin intermediul derivatului său monoclorotriazinic (Figura 3.28) (Martel și al., 2001
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
carboximetil-β-CD cu chitosan și care are capacitatea de a forma un complex de incluziune. Această proprietate a fost studiată utilizând un colorant fluorescent (6-(p-toluidin)-2-naftalen-6-sulfonat, ca moleculă „guest”. Polimerul host având grupări aminice libere pe catena de chitosan recunoaște molecula de colorant atât prin interacțiune ionică, cât și complexare host-guest. β-CD a fost cuplată cu chitosan prin intermediul derivatului său monoclorotriazinic (Figura 3.28) (Martel și al., 2001). Adsorbția coloranților textili pe acest derivat arată că acest adsorbent prezintă o capacitatea
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
eterogene, s-a observat scăderea exponențială a capacității de adsorbție a Reactive Red 2 de la 200 la 50 mg g-1, odată cu creșterea gradului de funcționalizare de la 0 la 1,6 mol GLU/mol amină. Aceasta se datorează difuziei restrictive a moleculelor prin rețeaua polimerică și flexibilității reduse a lanțului polimeric. Totuși, Chiou și Li (2003) au indicat că etapa de funcționalizare este necesară pentru a îmbunătăți rezistența mecanică, rezistența materialului la condiții acide, alcaline și compuși chimici și de asemenea pentru
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
pH acid, încărcarea suprafeței adsorbentului crește, în principal datorită protonării grupei amino a chitosanului. Roșu Congo este un colorant acid și conține grupe sulfonice. Adsorbția mai accentuată a colorantului la pH mai mic se datorează probabil creșterii atracției electrostatice între moleculele de colorant încărcate negativ și grupările aminice pozitive. La pH 6,4, la care suprafața granulelor de gel de chitosan este neutră, adsorbția colorantului poate fi atribuită doar forțelor fizice. Pe baza unor modele s-a constatat că există orice
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
6,4, la care suprafața granulelor de gel de chitosan este neutră, adsorbția colorantului poate fi atribuită doar forțelor fizice. Pe baza unor modele s-a constatat că există orice posibilitate a formării legăturii de hidrogen între anumite componente ale moleculei de Roșu Congo, cum ar fi N, S, O, nucleul benzenic și grupele CH2OH ale moleculei de chitosan. La pH mai mare de 6,4 suprafața granulelor de chitosan este încărcată negativ și împiedică adsorbția, datorită forțelor de respingere electrostatică
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
atribuită doar forțelor fizice. Pe baza unor modele s-a constatat că există orice posibilitate a formării legăturii de hidrogen între anumite componente ale moleculei de Roșu Congo, cum ar fi N, S, O, nucleul benzenic și grupele CH2OH ale moleculei de chitosan. La pH mai mare de 6,4 suprafața granulelor de chitosan este încărcată negativ și împiedică adsorbția, datorită forțelor de respingere electrostatică între molecula de colorant încărcată negativ și adsorbent. Cantitatea apreciabilă adsorbită în acest interval de pH
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
Roșu Congo, cum ar fi N, S, O, nucleul benzenic și grupele CH2OH ale moleculei de chitosan. La pH mai mare de 6,4 suprafața granulelor de chitosan este încărcată negativ și împiedică adsorbția, datorită forțelor de respingere electrostatică între molecula de colorant încărcată negativ și adsorbent. Cantitatea apreciabilă adsorbită în acest interval de pH sugerează implicarea forțelor fizice, cum ar fi legătura de hidrogen, forțe van der Waals în procesul de adsorbție. În Figura 3.30 sunt reprezentate toate interacțiunile
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]