531 matches
-
reacție chimică sau de a transforma alte substanțe chimice. Oxidoreducerea (sau redox) este o reacție ce are loc cu transfer de electroni între speciile atomice. Substanțele ce prezintă proprietatea de a oxida alte substanțe se numesc agenți oxidanți sau simplu, oxidanți. Acestea îndepărtează electroni din alte substanțe. În mod similar, substanțele ce prezintă proprietatea de a reduce alte substanțe se numesc agenți reducători, sau simplu, reducători. Aceștia transfera electroni unei alte specii chimice. Oxidarea reprezintă cedare de electroni, iar reducerea decurge
Chimie () [Corola-website/Science/296531_a_297860]
-
de tipul DMF(dimetilformamida( și DMSO (dimetilsulfoxid)sunt folosiți ca mediu de reacție pentru prima cale , datorită favorizării atacului la atomul de N, în timp ce solvenții nepolari de tipul toluenului favorizează atacul la C3 ul este relativ ușor oxidat în natură.oxidanți simpli de tipul N-bromosuccinimida oxidează selectiv indolul (1) la oxindol (4 și 5). Este de obicei folosit în parfumerie, pentru accentuarea anumitor uleiuri volatile. Nucleul indolic est întîlnit în:
Indol () [Corola-website/Science/304582_a_305911]
-
focarelor cazanelor, în special în contextul reducerii emisiilor poluante. Este nevoie de modele care să trateze curgerea turbulentă din focar, variația densității gazelor cu temperatura, antrenarea fazelor disperse (praf de combustibil) de către mediul fluid, reacțiile chimice exoterme dintre combustibil și oxidant, schimbul de căldură prin radiație, și mecanisme Zeldovici și Fenimore de formare a NO. Preocupări privind MFN în România au apărut prima dată la Universitatea Politehnica din București, Facultatea de Aeronave. În anii 1990 în cadrul Universității Politehnica din Timișoara a
Mecanica fluidelor numerică () [Corola-website/Science/322472_a_323801]
-
Acestea sunt foarte stilizate și de dimensiuni mici. În mare măsură este vorba de figuri antropomorfe stilizate. Figurinele zoomorfe sunt foarte rare. Ceramica este realizată dintr-un amestec de lut, materii organice, nisip și pietricele. Vasele sunt arse în mediu oxidant la temperaturi de 700-800 grade. Sunt acoperite uneori cu un slip roșu și, în funcție de faza culturii și felul ceramicii, cu pictură realizată cu alb, negru sau roșu. Caracteristic pentru ceramica acestei culturi, pe lângă folosirea materialelor organice drept degresant, mai este
Cultura Starčevo-Criș () [Corola-website/Science/302737_a_304066]
-
sub denumirea de "suflător oxiacetilenic". În 1923, savantul american Robert H. Goddard a devenit prima persoană care a dezvoltat un motor de rachetă care folosea combustibil lichid; motorul utiliza benzină pe post de combustibil și oxigen lichid pe post de oxidant. Pe 16 martie 1926, Goddard a reușit cu succes să facă o mică rachetă să zboare 56 m cu 97 km/h, în Auburn, Massachusetts, SUA. În condiții normale de temperatură și presiune, oxigenul este un gaz incolor, inodor și
Oxigen () [Corola-website/Science/297158_a_298487]
-
material indispensabil în producerea multor produse, cu ar fi antigelul și polimerii de poliester (precursorii multor plastice și țesături). Cea mai mare parte din restul de 20% din oxigenul produs comercial e folosit în scopuri medicale, sudare și tăiere, ca oxidant în combustibilul de rachete, și în tratamentul cu apă. Oxigenul e folosit în sudarea oxiacetilenică, arderea acetilenei cu pentru a produce o flacără foarte fierbinte. În acest proces, metalul cu o grosime de până la 60 de cm e încălzit, prima
Oxigen () [Corola-website/Science/297158_a_298487]
-
În ritmul curent al fotosintezei, ar fi nevoie de 2000 de ani pentru a regenera tot -ul prezent în atmosferă. Standard-urile NFPA 704 declară oxigenul comprimat ca fiind deloc primejdios pentru sănătate, inflamabil și nonreactiv, dar ca fiind un oxidant. Oxigenului lichid refrigerat i se acordă un grad de pericol pentru sănătate de 3 (pentru riscul crescut de hiperoxie de la vapori condensați, și pentru pericole comune lichidelor criogenice precum degerăturile), celelalte evaluări fiind identice cu cele de la forma de gaz
Oxigen () [Corola-website/Science/297158_a_298487]
-
oxigen la o adâncime de 66 de metri sau mai mare; același lucru se poate întâmpla prin respirarea a 100% la 6 metri adâncime. Surse cu o concentrație ridicată de oxigen încurajează combustia rapidă. Focul și exploziile se întâmplă când oxidanți concentrați și combustibili sunt aduși în proximitate; totuși, igniția, cum ar fi căldura sau o scânteie, e necesară pentru a declanșa arderea. Oxigenul însuși nu e combustibilul, ci oxidantul. Pericolele legate de combustie se aplică de asemenea compușilor oxigenului cu
Oxigen () [Corola-website/Science/297158_a_298487]
-
de oxigen încurajează combustia rapidă. Focul și exploziile se întâmplă când oxidanți concentrați și combustibili sunt aduși în proximitate; totuși, igniția, cum ar fi căldura sau o scânteie, e necesară pentru a declanșa arderea. Oxigenul însuși nu e combustibilul, ci oxidantul. Pericolele legate de combustie se aplică de asemenea compușilor oxigenului cu un potențial de oxidație foarte mare, cum ar fi peroxizii, clorații, nitrații, perclorații și dicromații deoarece ei pot dona oxigen unui foc. Scurgeri de oxigen lichid, dacă se îmbibează
Oxigen () [Corola-website/Science/297158_a_298487]
-
Lander și folosea un motor rachetă cu combustibil monopropelant pentru aterizare și deplasare. Haas era o rachetă orbitala în trei trepte care era propulsata de motoare hibride ce foloseau combustibil pe bază de bitum și apa oxigentă în rol de oxidant. Trebuia să fie lansată de la o altitudine de 18.000 m la care era ridicată de cel mai mare balon solar construit vreodată, având un volum de 2 milioane de metri cubi. Pentru rachetă Haas au creat un vehicul demonstrator
ARCA Space Corporation () [Corola-website/Science/317009_a_318338]
-
compuși chimici de o importanță industrială ridicată sunt obținuți prin înlocuirea unuia sau mai mulți atomi de hidrogen ai benzenului cu alte grupe funcționale. Benzenul este o substanță foarte inflamabilă, amestecul vaporilor săi cu aerul fiind exploziv. Reacționează violent cu oxidanții, acidul azotic, acidul sulfuric și halogenii, cauzând incendii. Atacă plasticul și cauciucul. Poate fi inhalat, ingerat sau poate pătrunde prin piele. Odată intrat în organism, se concentrează în grăsimi și în măduva osoasă, pentru care este toxic, blocând formarea globulelor
Benzen () [Corola-website/Science/310905_a_312234]
-
lichid incolor, miros similar cu acidul acetic. Este miscibil în apă și solubilă în etanol și eter. În laborator, acidul piruvic poate fi preparat prin încălzirea un amestec de acid tartric și bisulfat de potasiu, prin oxidarea propilenglicolului cu un oxidant puternic (de exemplu, permanganat de potasiu sau de hipoclorit de sodiu), sau hidroliza în continuare a 2-oxopropiononitrilui, formate prin reacția clorurii de acetil pe cianură de potasiu: Piruvatul este produsul final al căilor de catabolizare a glucozei (glicoliza, calea pentozo-fosfaților
Acid piruvic () [Corola-website/Science/319430_a_320759]
-
Indiactorii redoxometrici sunt substanțe organice care au proprietatea de oxidant sau reducător slab, pentru care forma oxidată diferă de forma redusă prin culoare și structură. Procesul poate fi simplificat astfel: In ox -Indicatorul în forma oxidată, culoare a In red- Indicatorul în forma redusă culoare b. Cei mai reprezentativi indicatori
Indicator redoxometric () [Corola-website/Science/306047_a_307376]
-
în general spontane unei densități mai crescute de microorganisme. În aprecierea poluării apei o semnificație deosebită o prezintă creșterile bruște ale valorilor materiei organice, ceea ce ridică intervenția unei poluări. Substanțele organice din apă se determină prin oxidarea materiei organice cu oxidanți KMnO4 sau K2CrO7. Cantitatea de substanțe organice din apă se exprimă din consumul chimic de oxigen de (CCO), care reprezintă cantitatea de oxigen necesară oxidării substanțelor organice în prezența unui oxidant puternic. Cantitatea de oxigen echivalentă cu consumul de oxidant
Consumul chimic de oxigen () [Corola-website/Science/328163_a_329492]
-
din apă se determină prin oxidarea materiei organice cu oxidanți KMnO4 sau K2CrO7. Cantitatea de substanțe organice din apă se exprimă din consumul chimic de oxigen de (CCO), care reprezintă cantitatea de oxigen necesară oxidării substanțelor organice în prezența unui oxidant puternic. Cantitatea de oxigen echivalentă cu consumul de oxidant se mai numește și oxidabilitate. Rezultatul determinării oxidabilității se exprimă în mg echivalent oxigen cu conținutul de oxidant la un litru de probă. În practica curentă sanitară oxidantul cel mai folosit
Consumul chimic de oxigen () [Corola-website/Science/328163_a_329492]
-
oxidanți KMnO4 sau K2CrO7. Cantitatea de substanțe organice din apă se exprimă din consumul chimic de oxigen de (CCO), care reprezintă cantitatea de oxigen necesară oxidării substanțelor organice în prezența unui oxidant puternic. Cantitatea de oxigen echivalentă cu consumul de oxidant se mai numește și oxidabilitate. Rezultatul determinării oxidabilității se exprimă în mg echivalent oxigen cu conținutul de oxidant la un litru de probă. În practica curentă sanitară oxidantul cel mai folosit este KMnO4. Principiul metodei: KMnO4 oxidează substanțele organice din
Consumul chimic de oxigen () [Corola-website/Science/328163_a_329492]
-
CCO), care reprezintă cantitatea de oxigen necesară oxidării substanțelor organice în prezența unui oxidant puternic. Cantitatea de oxigen echivalentă cu consumul de oxidant se mai numește și oxidabilitate. Rezultatul determinării oxidabilității se exprimă în mg echivalent oxigen cu conținutul de oxidant la un litru de probă. În practica curentă sanitară oxidantul cel mai folosit este KMnO4. Principiul metodei: KMnO4 oxidează substanțele organice din apă în mediul acid și la temperatură, apoi excesul de KMnO4 se titrează cu acid oxalic. Reactive : KMnO4
Consumul chimic de oxigen () [Corola-website/Science/328163_a_329492]
-
în prezența unui oxidant puternic. Cantitatea de oxigen echivalentă cu consumul de oxidant se mai numește și oxidabilitate. Rezultatul determinării oxidabilității se exprimă în mg echivalent oxigen cu conținutul de oxidant la un litru de probă. În practica curentă sanitară oxidantul cel mai folosit este KMnO4. Principiul metodei: KMnO4 oxidează substanțele organice din apă în mediul acid și la temperatură, apoi excesul de KMnO4 se titrează cu acid oxalic. Reactive : KMnO4, sol (0,1 N ) acid oxalic, sol (0,1 N
Consumul chimic de oxigen () [Corola-website/Science/328163_a_329492]
-
separare cu ajutorul unor încărcături explozive. În partea superioară a modulului erau montate patru grupuri de propulsoare de manevră, plasate la 90 de grade. Fiecare propulsor avea o forță de propulsie de aproximativ 445 N, și folosea drept combustibil MMH și oxidant NO. Fiecare grup măsura 2.4 pe 0.9 m și avea rezervorul de combustibil și cel cu oxidant comune pentru toate propulsoarele componente. Tunelul central (3.8 m lungime și 2.501 m diametru la bază) găzduia motorul principal
Modulul de comandă și serviciu Apollo () [Corola-website/Science/308345_a_309674]
-
la 90 de grade. Fiecare propulsor avea o forță de propulsie de aproximativ 445 N, și folosea drept combustibil MMH și oxidant NO. Fiecare grup măsura 2.4 pe 0.9 m și avea rezervorul de combustibil și cel cu oxidant comune pentru toate propulsoarele componente. Tunelul central (3.8 m lungime și 2.501 m diametru la bază) găzduia motorul principal și 2 rezervoare cu heliu. Combustibilul pentru motor era de tip Aerozine 50 și oxidantul NO. Forță de propulsie
Modulul de comandă și serviciu Apollo () [Corola-website/Science/308345_a_309674]
-
combustibil și cel cu oxidant comune pentru toate propulsoarele componente. Tunelul central (3.8 m lungime și 2.501 m diametru la bază) găzduia motorul principal și 2 rezervoare cu heliu. Combustibilul pentru motor era de tip Aerozine 50 și oxidantul NO. Forță de propulsie maximă era de 91.2 kN (9300 kgf). "Modulul de serviciu" era împărțit în șase sectoare: Deasupra peretelui anterior era montată antena în bandă S. Aceasta era folosită pentru comunicația cu Centrul de control al misiunii
Modulul de comandă și serviciu Apollo () [Corola-website/Science/308345_a_309674]
-
studiilor ce urmăresc efectele reacțiilor izotopice. Tritiul, produs în reactoarele nucleare, se folosește în producerea bombelor cu hidrogen, în marcare izotopică și ca sursa de iradiere pentru vopselele fosforescente. Hidrogenul poate forma amestecuri explozive cu aerul și reacționează violent cu oxidanții. În cazul inhalării în cantități foarte mari, poate produce asfixierea, pierderea mobilității motrice și a cunoștinței. Scurgerea hidrogenului gazos în atmosferă poate cauza autoaprinderea sa. Flacăra de hidrogen este invizibilă, acest lucru putând produce arsuri accidentale. Multe proprietăți fizice și
Hidrogen () [Corola-website/Science/297141_a_298470]
-
prăjirea minereului de crom cu hidroxid de potasiu. Este solubil în apă și se ionizează în procesul de disoluție: Bicromatul de potasiu este un agent oxidant. Ecuația de reducere parțială este următoarea: În chimia organică bicromatul de potasiu este un oxidant ușor comparativ cu permanganatul de potasiu. Este utilizat pentru oxidarea alcoolilor. Bicromatul de potasiu transformă alcoolul în aldehide sau acizi carboxilici dacă este încălzit prin reflux. Alcoolii secundari sunt convertiți în cetone - oxidarea suplimentară nu este posibilă. De exemplu, mentona
Bicromat de potasiu () [Corola-website/Science/332200_a_333529]
-
oxidul de bariu (BaO) și peroxidul de bariu (BaO). Oxidul de bariu (BaO) adsoarbe apa (HO) și dioxidul de carbon (CO) fiind utilizat în mod corespunzător. Peroxidul de bariu (BaO), se obține din oxidul de bariu (BaO), fiind un puternic oxidant. Este folosit în pirotehnie. Peroxidul de bariu (BaO) poate fi folosit în obținerea apei oxigenate (HO). Dacă se dizolvă oxidul de bariu (BaO) în apă, se obține o bază tare, hidroxidul de bariu (Ba(OH)), care este utilizată pentru identificarea
Bariu () [Corola-website/Science/304317_a_305646]
-
sodiu, E302 ascorbat de calciu, E303 ascorbat de potasiu, E304 esteri ai acidului ascorbic cu acizi grași (i) ascorbil palmitat (ii) ascorbil stearat. Ascorbatul se comporă ca un antioxidant prin disponibilitatea sa de a se oxida în condiții energetice favorabile. Oxidanții (numiți științific specii de oxigen reactiv) precum redicalul hidroxil (format din peroxid de hidrogen), conțin un orbital monoelectronic și de aceea sunt foarte reactivi și dăunători oamenilor și plantelor la nivel molecular. Acest lucru are loc datorită interacției lor cu
Acid ascorbic () [Corola-website/Science/301468_a_302797]