2,174 matches
-
țările cu o economie de piață și cu un regim democratic este în general acceptat punctul de vedere că lucrările de gospodărire apelor necesită analize mult mai detaliate decât simpla satisfacere a necesarului de apă al folosințelor cu o probabilitate normată. Există diferite metode care sunt utilizate în acest scop. Toate metodele recunosc faptul că procesele de gospodărire a apelor sunt procese stohastice complexe. De aceea, chiar dacă unele metode nu sunt specifice studiului proceselor stohastice, toate sunt legate de prelucrări probabilistice
Probabilitatea de satisfacere a folosințelor în gospodărirea apelor () [Corola-website/Science/304294_a_305623]
-
producerea a 1.000 euro Produs Intern Brut se consumă de patru ori mai multe resurse energetice decât media în UE. Aproximativ 80% din grupurile termoenergetice din România sunt instalate în perioada 1970 - 1980, depășindu-și practic durată de viață normata. În ultimii 10 ani au fost modernizate și retehnologizate unele centrale termoelectrice cu o capacitate de aproximativ 10% din puterea instalată. De asemenea, aproximativ 37% din grupurile hidroenergetice și-au depășit practic durată de viață normata. Potențialul național de economisire
Industria energetică în România () [Corola-website/Science/310530_a_311859]
-
practic durată de viață normata. În ultimii 10 ani au fost modernizate și retehnologizate unele centrale termoelectrice cu o capacitate de aproximativ 10% din puterea instalată. De asemenea, aproximativ 37% din grupurile hidroenergetice și-au depășit practic durată de viață normata. Potențialul național de economisire de energie este apreciat la 27 - 35% din resursele energetice primare (10 milioane țep/an), adică un echivalent a 3 miliarde Euro. Pentru reabilitarea întregului sistem energetic sunt necesare, până în 2020, fonduri totale de 31 miliarde
Industria energetică în România () [Corola-website/Science/310530_a_311859]
-
În analiza matematică, un spațiu Banach este un spațiu vectorial normat în care orice șir Cauchy este convergent. Spațiile Banach sunt numite după matematicianul polonez Stefan Banach (1892 - 1945). În teoria spațiilor liniare normate, cele mai importante rezultate se obțin în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
convergent. Spațiile Banach sunt numite după matematicianul polonez Stefan Banach (1892 - 1945). În teoria spațiilor liniare normate, cele mai importante rezultate se obțin în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este șir convergent către un element din spațiul Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci formula 10 Deci dacă formula 11 este șir Cauchy, atunci
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci formula 10 Deci dacă formula 11 este șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat "X" fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15un șir Cauchy în formula 16 Atunci există un subșir formula 17 astfel încât formula 18 Rezultă că seria formula 19 este convergentă. Conform celor demonstrate în prima parte a teoremei, rezultă că
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
convergent. Prin urmare, șirul formula 15 este convergent. "Teoremă". Dacă formula 26 sunt spații Banach, atunci spațiul liniar normat produs formula 27 este de asemenea un spațiu Banach. "Demonstrație". Trebuie demonstrată doar completitudinea spațiului formula 28 Fie formula 29 un șir Cauchy din spațiul liniar normat produs formula 30 unde formula 31 Pentru fiecare formula 3 există formula 33 astfel încât formula 34 de unde rezultă că formula 35 Atunci există formula 36 astfel încât formula 37 Deci formula 38 Se notează formula 39 În concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
există formula 36 astfel încât formula 37 Deci formula 38 Se notează formula 39 În concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor Banach). Dacă normele formula 44 și formula 45, definite în spațiul liniar formula 46 sunt echivalente, atunci spațiul liniar normat formula 47 este spațiu Banach dacă și numai dacă spațiul liniar normat formula 48 este spațiu Banach. "Demonstrație". Fie formula 49 două constante alese astfel ca formula 50 Fie, în continuare, formula 51 spațiu Banach și formula 52 un șir fundamental în formula 53 Pentru numărul formula 54
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor Banach). Dacă normele formula 44 și formula 45, definite în spațiul liniar formula 46 sunt echivalente, atunci spațiul liniar normat formula 47 este spațiu Banach dacă și numai dacă spațiul liniar normat formula 48 este spațiu Banach. "Demonstrație". Fie formula 49 două constante alese astfel ca formula 50 Fie, în continuare, formula 51 spațiu Banach și formula 52 un șir fundamental în formula 53 Pentru numărul formula 54 există formula 55 astfel încât pentru orice formula 56 există relația formula 57 Se obține
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
șirul formula 52 este convergent în formula 69 În consecință, spațiul formula 70 este spațiu Banach. Schimbând cu rolurile normele formula 71 și formula 72 se obține că dacă formula 70 este spațiu Banach atunci și formula 60 este spațiu Banach. "Definiție". Fie formula 75 un spațiu liniar normat, formula 76 un șir de elemente din formula 77 și formula 78 Dacă există formula 79 atunci seria formula 80 se numește "serie convergentă". Elementul formula 81 este "suma seriei" formula 14 și se notează formula 83 Șirul formula 12 se numește "șirul sumelor parțiale".</br> Dacă șirul sumelor
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Șirul formula 12 se numește "șirul sumelor parțiale".</br> Dacă șirul sumelor parțiale nu este convergent, atunci seria se numește "divergentă".</br> Dacă seria formula 85 este convergentă, atunci seria formula 86 se numește "absolut convergentă". Pentru a determina dacă un spațiu liniar normat este complet, există următorul criteriu: "Teoremă". Un spațiu liniar normat formula 75 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă formula 90
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
sumelor parțiale nu este convergent, atunci seria se numește "divergentă".</br> Dacă seria formula 85 este convergentă, atunci seria formula 86 se numește "absolut convergentă". Pentru a determina dacă un spațiu liniar normat este complet, există următorul criteriu: "Teoremă". Un spațiu liniar normat formula 75 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă formula 90 atunci formula 10 Deci dacă formula 92 este șir Cauchy, atunci formula 12
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
absolut convergentă". Pentru a determina dacă un spațiu liniar normat este complet, există următorul criteriu: "Teoremă". Un spațiu liniar normat formula 75 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă formula 90 atunci formula 10 Deci dacă formula 92 este șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15 un șir Cauchy în formula 16 Atunci există un subșir formula 99 astfel încât formula 100 1) Oricare spațiu liniar normat finit-dimensional este spațiu Banach. 2) Fie spațiul liniar normat formula 101 al șirurilor formula 102 din formula 103 astfel încât seria formula 104 este convergentă, unde norma este definită de: Atunci formula 106 este spațiu Banach. "Demonstrație". Faptul că formula 107 este normă, rezultă din inegalitatea lui
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15 un șir Cauchy în formula 16 Atunci există un subșir formula 99 astfel încât formula 100 1) Oricare spațiu liniar normat finit-dimensional este spațiu Banach. 2) Fie spațiul liniar normat formula 101 al șirurilor formula 102 din formula 103 astfel încât seria formula 104 este convergentă, unde norma este definită de: Atunci formula 106 este spațiu Banach. "Demonstrație". Faptul că formula 107 este normă, rezultă din inegalitatea lui Minkowski pentru sume finite. Fie formula 108 un șir Cauchy
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Un spațiu vectorial normat, numit pe scurt spațiu normat, este un spațiu vectorial real sau complex formula 1 pe care este definită o funcție, formula 2, numită "normă" având următoarele proprietăți: Norma definește o distanță formula 11. Astfel, orice spațiu normat este spațiu metric. Un spațiu normat
Spațiu vectorial normat () [Corola-website/Science/309761_a_311090]
-
Un spațiu vectorial normat, numit pe scurt spațiu normat, este un spațiu vectorial real sau complex formula 1 pe care este definită o funcție, formula 2, numită "normă" având următoarele proprietăți: Norma definește o distanță formula 11. Astfel, orice spațiu normat este spațiu metric. Un spațiu normat în care orice șir Cauchy
Spațiu vectorial normat () [Corola-website/Science/309761_a_311090]
-
Un spațiu vectorial normat, numit pe scurt spațiu normat, este un spațiu vectorial real sau complex formula 1 pe care este definită o funcție, formula 2, numită "normă" având următoarele proprietăți: Norma definește o distanță formula 11. Astfel, orice spațiu normat este spațiu metric. Un spațiu normat în care orice șir Cauchy este convergent se numește spațiu Banach. a) Următoarele aplicații sunt norme pe formula 12 b) Fie formula 16 și formula 17 Atunci formula 18 este spațiu normat în raport cu norma dată prin formula 19
Spațiu vectorial normat () [Corola-website/Science/309761_a_311090]
-
normat, numit pe scurt spațiu normat, este un spațiu vectorial real sau complex formula 1 pe care este definită o funcție, formula 2, numită "normă" având următoarele proprietăți: Norma definește o distanță formula 11. Astfel, orice spațiu normat este spațiu metric. Un spațiu normat în care orice șir Cauchy este convergent se numește spațiu Banach. a) Următoarele aplicații sunt norme pe formula 12 b) Fie formula 16 și formula 17 Atunci formula 18 este spațiu normat în raport cu norma dată prin formula 19
Spațiu vectorial normat () [Corola-website/Science/309761_a_311090]
-
o distanță formula 11. Astfel, orice spațiu normat este spațiu metric. Un spațiu normat în care orice șir Cauchy este convergent se numește spațiu Banach. a) Următoarele aplicații sunt norme pe formula 12 b) Fie formula 16 și formula 17 Atunci formula 18 este spațiu normat în raport cu norma dată prin formula 19
Spațiu vectorial normat () [Corola-website/Science/309761_a_311090]
-
în raport cu topologia indusă de metrică (vezi secțiunea următoare), orice "bilă deschisă" este o mulțime deschisă și orice "bilă închisă" este o mulțime închisă. În orice spațiu metric are loc formula 19, unde formula 20 desemnează închiderea topologică a mulțimii "M". În spațiile normate finit-dimensionale, de exemplu în formula 21, formula 9, formula 23 și formula 24, are loc egalitatea formula 25. Orice metrică induce o topologie pe mulțimea de puncte. Astfel, orice spațiu metric este și spațiu topologic. Topologia indusă de metrică este definită astfel (oricare din cele
Spațiu metric () [Corola-website/Science/309769_a_311098]