554 matches
-
reprezintă un acumulatori în care un anod litiu este cuplat electrochimic la oxigenul atmosferic printr-un catod de aer. În timpul descărcării, cationii de litiu de la anod trec printr-un electrolit și se combină cu oxigenul la catod (de obicei alcătuit din carbon poros) pentru a forma oxid sau peroxid de litiu, care se introduce în catod; fluxul de electroni de la anod la catod printr-un circuit de încărcare. Acumulatorii litiu-aer au o densitate de energie mai mare
Acumulator litiu-aer () [Corola-website/Science/322427_a_323756]
-
un catod de aer. În timpul descărcării, cationii de litiu de la anod trec printr-un electrolit și se combină cu oxigenul la catod (de obicei alcătuit din carbon poros) pentru a forma oxid sau peroxid de litiu, care se introduce în catod; fluxul de electroni de la anod la catod printr-un circuit de încărcare. Acumulatorii litiu-aer au o densitate de energie mai mare decât bateriile litiu-ion din cauza catodului mai ușoar și de faptul că oxigenul este disponibil în mediu și nu trebuie
Acumulator litiu-aer () [Corola-website/Science/322427_a_323756]
-
de litiu de la anod trec printr-un electrolit și se combină cu oxigenul la catod (de obicei alcătuit din carbon poros) pentru a forma oxid sau peroxid de litiu, care se introduce în catod; fluxul de electroni de la anod la catod printr-un circuit de încărcare. Acumulatorii litiu-aer au o densitate de energie mai mare decât bateriile litiu-ion din cauza catodului mai ușoar și de faptul că oxigenul este disponibil în mediu și nu trebuie să fie stocat în baterie. Teoretic, cu
Acumulator litiu-aer () [Corola-website/Science/322427_a_323756]
-
carbon poros) pentru a forma oxid sau peroxid de litiu, care se introduce în catod; fluxul de electroni de la anod la catod printr-un circuit de încărcare. Acumulatorii litiu-aer au o densitate de energie mai mare decât bateriile litiu-ion din cauza catodului mai ușoar și de faptul că oxigenul este disponibil în mediu și nu trebuie să fie stocat în baterie. Teoretic, cu oxigen, ca reactant catod nelimitat, capacitatea bateriei este limitată de anodul Li. Bateriile litiu-aer sunt în prezent în curs
Acumulator litiu-aer () [Corola-website/Science/322427_a_323756]
-
de încărcare. Acumulatorii litiu-aer au o densitate de energie mai mare decât bateriile litiu-ion din cauza catodului mai ușoar și de faptul că oxigenul este disponibil în mediu și nu trebuie să fie stocat în baterie. Teoretic, cu oxigen, ca reactant catod nelimitat, capacitatea bateriei este limitată de anodul Li. Bateriile litiu-aer sunt în prezent în curs de dezvoltare și sunt încă disponibile pe piață la unele modele de telefoane mobile:spre exemplu cei de la firma Oukitel care au introdus pe un
Acumulator litiu-aer () [Corola-website/Science/322427_a_323756]
-
plumb (PbO), iar ionul sulfat trece în soluție. La electrodul negativ sulfatul de plumb se reduce, transformându-se în plumb elementar, ionii sulfat trecând în electrolit. La încărcarea acumulatorului: La electrodul pozitiv (anodul): PbO <-- PbSO Electrolit: HSO La electrodul negativ (catodul): PbSO --> Pb Electrolit: HSO Când este în funcțiune procesul este invers, și are loc până la epuizarea ionilor sulfat din soluția de acid sulfuric, dacă acumulatorul nu este încărcat. În funcțiune: La catod are loc reducerea plumbului: PbO + 4H + SO + 2e
Plumb () [Corola-website/Science/304276_a_305605]
-
anodul): PbO <-- PbSO Electrolit: HSO La electrodul negativ (catodul): PbSO --> Pb Electrolit: HSO Când este în funcțiune procesul este invers, și are loc până la epuizarea ionilor sulfat din soluția de acid sulfuric, dacă acumulatorul nu este încărcat. În funcțiune: La catod are loc reducerea plumbului: PbO + 4H + SO + 2e ---> PbSO + 2 HO La anod are loc oxidarea: Pb + SO -----> PbSO + 2e Acumulatorul pe bază de plumb și acid a fost inventat de fizicianul francez Gaston Planté în anul 1859 și este
Plumb () [Corola-website/Science/304276_a_305605]
-
fiind un flux de electroni, acești electroni trebuie să fie emiși de unul dintre electrozi. La tuburile cu vid, unde nu există posibilitatea ionizării mediului dintre electrozi, electronii nu pot fi generați decât prin emisie termionică de unul dintre electrozi, catodul. Încălzirea poate fi "indirectă", printr-un filament alimentat separat de catod, sau "directă" caz în care filamentul este însuși catodul. Inițial temperatura la care trebuia încălzit catodul era de c. 2300 K (c. 2000), ceea ce făcea ca tuburile să aibă
Tub electronic () [Corola-website/Science/328679_a_330008]
-
de unul dintre electrozi. La tuburile cu vid, unde nu există posibilitatea ionizării mediului dintre electrozi, electronii nu pot fi generați decât prin emisie termionică de unul dintre electrozi, catodul. Încălzirea poate fi "indirectă", printr-un filament alimentat separat de catod, sau "directă" caz în care filamentul este însuși catodul. Inițial temperatura la care trebuia încălzit catodul era de c. 2300 K (c. 2000), ceea ce făcea ca tuburile să aibă o viață foarte scurtă, dar actual se folosesc catozi acoperiți cu
Tub electronic () [Corola-website/Science/328679_a_330008]
-
nu există posibilitatea ionizării mediului dintre electrozi, electronii nu pot fi generați decât prin emisie termionică de unul dintre electrozi, catodul. Încălzirea poate fi "indirectă", printr-un filament alimentat separat de catod, sau "directă" caz în care filamentul este însuși catodul. Inițial temperatura la care trebuia încălzit catodul era de c. 2300 K (c. 2000), ceea ce făcea ca tuburile să aibă o viață foarte scurtă, dar actual se folosesc catozi acoperiți cu stronțiu și bariu, care au o emisie de electroni
Tub electronic () [Corola-website/Science/328679_a_330008]
-
electronii nu pot fi generați decât prin emisie termionică de unul dintre electrozi, catodul. Încălzirea poate fi "indirectă", printr-un filament alimentat separat de catod, sau "directă" caz în care filamentul este însuși catodul. Inițial temperatura la care trebuia încălzit catodul era de c. 2300 K (c. 2000), ceea ce făcea ca tuburile să aibă o viață foarte scurtă, dar actual se folosesc catozi acoperiți cu stronțiu și bariu, care au o emisie de electroni bună și la temperaturi de doar 1000
Tub electronic () [Corola-website/Science/328679_a_330008]
-
separat de catod, sau "directă" caz în care filamentul este însuși catodul. Inițial temperatura la care trebuia încălzit catodul era de c. 2300 K (c. 2000), ceea ce făcea ca tuburile să aibă o viață foarte scurtă, dar actual se folosesc catozi acoperiți cu stronțiu și bariu, care au o emisie de electroni bună și la temperaturi de doar 1000 K (c. 700). Dacă alt electrod, anodul, este legat la o tensiune pozitivă (+), electronii vor fi atrași de el, iar prin tub
Tub electronic () [Corola-website/Science/328679_a_330008]
-
temperaturi de doar 1000 K (c. 700). Dacă alt electrod, anodul, este legat la o tensiune pozitivă (+), electronii vor fi atrași de el, iar prin tub și circuitul exterior va apărea un curent electric. Întrucât electronii sunt emiși numai de catod, curentul prin tub poate avea un singur sens, aplicațiile tuburilor fiind în funcție de acest aspect. Mișcarea electronilor în tub poate fi controlată prin intermediul altor electrozi, care se află la diferite tensiuni. După numărul de electrozi tuburile pot fi diode (cu doi
Tub electronic () [Corola-website/Science/328679_a_330008]
-
de la care este derivat cuvântul electricitate) și hodos, mod. Exemple practice de utilizare a electrozilor sunt: acumulatorul electric, tubul cinescop, lampa cu descărcare în gaze. Electrozii, de unde electronii pleacă în „conductorul" (lichid, gazos) ionic, prin ioni încărcați negativ, se numesc catozi iar cei ce primesc electronii de la ionii negativi se numesc anozi. Din punct de vedere material, electrozii se construiesc din bucăți metalice cu formă de pini (cilindrici), plăci etc. Ei sunt legați la o sursă de curent electric, și la
Electrod () [Corola-website/Science/310923_a_312252]
-
de vedere material, electrozii se construiesc din bucăți metalice cu formă de pini (cilindrici), plăci etc. Ei sunt legați la o sursă de curent electric, și la închiderea circuitului electric, ionii negativi ai electrolitului lichid încep să transporte electronii de la catod la anod, când alimentarea electrică este de curent continuu. În mediu gazos, electronii sunt smulși de la suprafața catodului și accelerați, datorită câmpului electric, spre electrodul pozitiv, anodul. Un electrod într-o celulă electrochimică este menționat fie ca un anod fie
Electrod () [Corola-website/Science/310923_a_312252]
-
legați la o sursă de curent electric, și la închiderea circuitului electric, ionii negativi ai electrolitului lichid încep să transporte electronii de la catod la anod, când alimentarea electrică este de curent continuu. În mediu gazos, electronii sunt smulși de la suprafața catodului și accelerați, datorită câmpului electric, spre electrodul pozitiv, anodul. Un electrod într-o celulă electrochimică este menționat fie ca un anod fie ca un catod (cuvinte care au fost, de asemenea, inventate de Faraday). Anodul este aici definit ca electrodul
Electrod () [Corola-website/Science/310923_a_312252]
-
când alimentarea electrică este de curent continuu. În mediu gazos, electronii sunt smulși de la suprafața catodului și accelerați, datorită câmpului electric, spre electrodul pozitiv, anodul. Un electrod într-o celulă electrochimică este menționat fie ca un anod fie ca un catod (cuvinte care au fost, de asemenea, inventate de Faraday). Anodul este aici definit ca electrodul de la care electronii părăsesc celula și se produce oxidarea, iar catodul ca electrodul prin care electronii intra în celulă și are loc reducerea. Fiecare electrod
Electrod () [Corola-website/Science/310923_a_312252]
-
electrod într-o celulă electrochimică este menționat fie ca un anod fie ca un catod (cuvinte care au fost, de asemenea, inventate de Faraday). Anodul este aici definit ca electrodul de la care electronii părăsesc celula și se produce oxidarea, iar catodul ca electrodul prin care electronii intra în celulă și are loc reducerea. Fiecare electrod poate deveni atât anod sau catod, în funcție de sensul curentului prin celulă. Un electrod bipolar este un electrod care funcționează ca anod al unei celule și drept
Electrod () [Corola-website/Science/310923_a_312252]
-
asemenea, inventate de Faraday). Anodul este aici definit ca electrodul de la care electronii părăsesc celula și se produce oxidarea, iar catodul ca electrodul prin care electronii intra în celulă și are loc reducerea. Fiecare electrod poate deveni atât anod sau catod, în funcție de sensul curentului prin celulă. Un electrod bipolar este un electrod care funcționează ca anod al unei celule și drept catod al unei alte celule. O celulă primară este un tip special de celulă electrochimică în care reacția nu poate
Electrod () [Corola-website/Science/310923_a_312252]
-
ca electrodul prin care electronii intra în celulă și are loc reducerea. Fiecare electrod poate deveni atât anod sau catod, în funcție de sensul curentului prin celulă. Un electrod bipolar este un electrod care funcționează ca anod al unei celule și drept catod al unei alte celule. O celulă primară este un tip special de celulă electrochimică în care reacția nu poate fi inversată, iar identitatea anodului și catodului sunt, prin urmare, fixe. Anodul este întotdeauna electrodul negativ. Celula poate fi descărcată, dar
Electrod () [Corola-website/Science/310923_a_312252]
-
electrod bipolar este un electrod care funcționează ca anod al unei celule și drept catod al unei alte celule. O celulă primară este un tip special de celulă electrochimică în care reacția nu poate fi inversată, iar identitatea anodului și catodului sunt, prin urmare, fixe. Anodul este întotdeauna electrodul negativ. Celula poate fi descărcată, dar nu poate fi reîncărcată. Un element electric secundar, de exemplu o baterie reîncărcabilă, este o celulă în care reacțiile chimice sunt reversibile. Atunci când celula este în
Electrod () [Corola-website/Science/310923_a_312252]
-
dar nu poate fi reîncărcată. Un element electric secundar, de exemplu o baterie reîncărcabilă, este o celulă în care reacțiile chimice sunt reversibile. Atunci când celula este în curs de încărcare, anodul devine electrod pozitiv (+) (nu ca la primare, negativ), iar catodul electrod negativ (-). Acesta este și cazul într-o celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate
Electrod () [Corola-website/Science/310923_a_312252]
-
curs de încărcare, anodul devine electrod pozitiv (+) (nu ca la primare, negativ), iar catodul electrod negativ (-). Acesta este și cazul într-o celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el prin anod. Multe dispozitive au
Electrod () [Corola-website/Science/310923_a_312252]
-
celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el prin anod. Multe dispozitive au și alți electrozi pentru a controla funcționarea, de exemplu bază, poartă, grilă de control. Într-o celulă cu trei electrozi, un contraelectrod
Electrod () [Corola-website/Science/310923_a_312252]
-
o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el prin anod. Multe dispozitive au și alți electrozi pentru a controla funcționarea, de exemplu bază, poartă, grilă de control. Într-o celulă cu trei electrozi, un contraelectrod, numit de asemenea electrod auxiliar, este folosit doar pentru
Electrod () [Corola-website/Science/310923_a_312252]