22,798 matches
-
în timpul creșterii părului. Dacă o persoană posedă o garnitură normală de gene implicate în producerea melaninei, sunt fabricate toate proteinele necesare și părul crește cu o culoare închisă. Dar dacă alelele pentru o anumită proteină au secvențe diferite și fabrică proteine care nu funcționează corect, nu se produce melanină și părul va fi alb. Această condiție se numește albinism iar o persoană în această condiție este un "albino". Genele sunt copiate de fiecare dată când o celulă se divide în două
Introducere în genetică () [Corola-website/Science/317336_a_318665]
-
de-a lungul fiecăruia din cele două șiraguri, împerechind noi nucleotide și închizând cele două fermoare. Sunt produse astfel două molecule ADN, fiecare conținând un șirag din vechiul ADN și un șirag nou fabricat. Acest proces nu e perfect: uneori proteinele fac erori și pun o nucleotidă greșită în șiragul pe care îl construiesc. Aceasta cauzează o schimbare în secvența genei respective. Asemenea modificări în secvența ADN se numesc mutații. Mutațiile produc noi alele ale genelor. Uneori aceste modificări împiedică gena
Introducere în genetică () [Corola-website/Science/317336_a_318665]
-
timpul șoarecii albi ar depăși ca număr șoarecii cu blană întunecată. Alelele pentru blană albă ar deveni mai comune, alelele pentru blană întunecată ar deveni mai rare Mutațiile creează alele noi. Aceste alele au secvențe ADN noi și pot produce proteine cu proprietăți noi. Deci dacă o insulă ar fi populată în întregime de șoareci negri, s-ar putea ca mutațiile să creeze alele pentru blană albă. Combinația de mutații care creează alele noi la întâmplare și selecția naturală care le
Introducere în genetică () [Corola-website/Science/317336_a_318665]
-
celulă, introducând o nouă porțiune de ADN într-o celulă poate fi produsă o nouă trăsătură. Așa procedează ingineria genetică. De exemplu, plantele de cultură pot primi o genă de la un pește arctic, ca frunzele lor să poată produce o proteină contra înghețului. Acest lucru servește la prevenirea pagubelor datorate gerului. Alte gene care pot fi introduse în plantele cultivate includ un "insecticid" natural din bacteria "Bacillus thuringiensis". Insecticidul omoară insectele care se hrănesc cu plantele, dar e inofensiv pentru oameni
Introducere în genetică () [Corola-website/Science/317336_a_318665]
-
fost elaborate metode prin care se măsoară proporția lor. În 1816, François Magendie a descoperit că hrănirea câinilor numai cu glucide (zahăr), grăsimi (ulei de măsline), și apă a rezultat în moartea lor datorită înfometării, iar câinii hrăniți și cu proteine au rămas în viață, identificând proteinele ca fiind un component alimentar esențial. În 1827, William Prout a fost prima persoană care a divizat alimentele în glucide, grăsimi, și proteine. În cursul secolului al XIX-lea, Jean-Baptiste Dumas și Justus von
Nutriție () [Corola-website/Science/317376_a_318705]
-
măsoară proporția lor. În 1816, François Magendie a descoperit că hrănirea câinilor numai cu glucide (zahăr), grăsimi (ulei de măsline), și apă a rezultat în moartea lor datorită înfometării, iar câinii hrăniți și cu proteine au rămas în viață, identificând proteinele ca fiind un component alimentar esențial. În 1827, William Prout a fost prima persoană care a divizat alimentele în glucide, grăsimi, și proteine. În cursul secolului al XIX-lea, Jean-Baptiste Dumas și Justus von Liebig erau în conflict din cauza credinței
Nutriție () [Corola-website/Science/317376_a_318705]
-
rezultat în moartea lor datorită înfometării, iar câinii hrăniți și cu proteine au rămas în viață, identificând proteinele ca fiind un component alimentar esențial. În 1827, William Prout a fost prima persoană care a divizat alimentele în glucide, grăsimi, și proteine. În cursul secolului al XIX-lea, Jean-Baptiste Dumas și Justus von Liebig erau în conflict din cauza credinței comune că animalele obțin proteine direct din plante (proteinele animale și vegetale sunt aceeași și oamenii nu produc compuși organici). Cu reputația de
Nutriție () [Corola-website/Science/317376_a_318705]
-
alimentar esențial. În 1827, William Prout a fost prima persoană care a divizat alimentele în glucide, grăsimi, și proteine. În cursul secolului al XIX-lea, Jean-Baptiste Dumas și Justus von Liebig erau în conflict din cauza credinței comune că animalele obțin proteine direct din plante (proteinele animale și vegetale sunt aceeași și oamenii nu produc compuși organici). Cu reputația de cel mai important chimist organic din acea perioadă, dar fără cunoștiințe în domeniul fiziologiei animalelor, Liebig a devenit bogat creând extracte alimentare
Nutriție () [Corola-website/Science/317376_a_318705]
-
William Prout a fost prima persoană care a divizat alimentele în glucide, grăsimi, și proteine. În cursul secolului al XIX-lea, Jean-Baptiste Dumas și Justus von Liebig erau în conflict din cauza credinței comune că animalele obțin proteine direct din plante (proteinele animale și vegetale sunt aceeași și oamenii nu produc compuși organici). Cu reputația de cel mai important chimist organic din acea perioadă, dar fără cunoștiințe în domeniul fiziologiei animalelor, Liebig a devenit bogat creând extracte alimentare precum bulionul din carne
Nutriție () [Corola-website/Science/317376_a_318705]
-
precum bulionul din carne de vită și formulă de lapte praf, care mai târziu s-au dovedit a fi de o valoare nutrițională discutabilă. În anii 1860, Claude Bernard a descoperit că grăsimea corporală poate fi sintetizată din glucide și proteine, demonstrând că energia din glucoza sanguină poate fi depozitată sub formă de grăsimi sau glicogen. La începutul anilor 1880, Kanehiro Takaki a observat că marinarii japonezi (care aveau o dietă alcătuită aproape în totalitate din orez) au dezvoltat beri-beri (sau
Nutriție () [Corola-website/Science/317376_a_318705]
-
sau nevrită endemică, o boală care provoacă probleme la nivelul inimii și paralizie), dar nu și marinarii britanici și ofițerii de marină japonezi. Adăugarea diverselor tipuri de legume în dieta marinarilor japonezi a prevenit boala (nu datorită aportului crescut de proteine, așa cum presupunea Takaki, ci datorită adiției de tiamină în dietă, recunoscută mai târziu drept tratamentul bolii). În 1896, Eugen Baumann a observat prezența iodului în glanda tiroidă. În 1897, Christiaan Eijkman a lucrat cu nativi din Insula Java, care sufereau
Nutriție () [Corola-website/Science/317376_a_318705]
-
crezând că amestecul conține toți nutrienții esențiali supraviețuirii, însă șobolanii au murit. Un al doilea grup de șobolani au fost hrăniți cu o cantitate de lapte care conținea vitamine. Frederick Hopkins a recunoscut că există "factori alimentari accesorii" pe lângă calorii, proteine, și minerale, ca materiale esențiale sănătății dar care nu pot fi sintetizate de către organism. În 1907, Stephen M. Babcock și Edwin B. Hart au efectuat un experiment, care urmărea dacă vacile pot supaviețui unui regim cu un singur tip de
Nutriție () [Corola-website/Science/317376_a_318705]
-
de lipsa unor nutrienți esențiali, sau în cazuri extreme, de consumul excesiv al unui nutrient esențial. De exemplu, atât sarea cât și apa (ambele fiind absolut necesare) vor provoca boli sau chiar moartea în cantități excesive. Macronutrienții sunt glucidele, grăsimile, proteinele, și apa. Macronutrienții (cu excepția fibrelor și a apei) furnizează materiale structurale (aminoacizi pentru formarea proteinelor, și lipide pentru formarea membranelor celulare și a unelor molecule semnal) și energie. O parte din materialele structurale pot fi folosite pentru a genera energie
Nutriție () [Corola-website/Science/317376_a_318705]
-
esențial. De exemplu, atât sarea cât și apa (ambele fiind absolut necesare) vor provoca boli sau chiar moartea în cantități excesive. Macronutrienții sunt glucidele, grăsimile, proteinele, și apa. Macronutrienții (cu excepția fibrelor și a apei) furnizează materiale structurale (aminoacizi pentru formarea proteinelor, și lipide pentru formarea membranelor celulare și a unelor molecule semnal) și energie. O parte din materialele structurale pot fi folosite pentru a genera energie, iar în ambele cazuri energia se măsoară în Jouli sau kilocalorii (numite adesea "Calorii" și
Nutriție () [Corola-website/Science/317376_a_318705]
-
fi folosite pentru a genera energie, iar în ambele cazuri energia se măsoară în Jouli sau kilocalorii (numite adesea "Calorii" și notate cu litera "C" majusculă pentru a nu se confunda cu calorii, notate cu litera "c" minusculă). Glucidele și proteinele furnizează aproximativ 17 kJ (4 kcal) de energie pe gram, în timp ce grăsimile furnizează 37 kJ (9 kcal) pe gram, deși energia netă a acestora depinde de factori precum absorbția și efortul depus in timpul digestiei, factori care variază substanțial de la
Nutriție () [Corola-website/Science/317376_a_318705]
-
simple (glucoză, fructoză, galactoză) la polizaharide complexe (amidon). Grăsimile sunt trigliceride, alcătuite din monomeri de acizi grași asortați legați la un schelet de glicerol. Unii acizi grași sunt esențiali în dietă: aceștia nu pot fi sintetizați în organism. Moleculele de proteine conțin atomi de azot pe lângă carbon, oxigen, și hidrogen. Componentele fundamentale ale proteinelor sunt aminoacizi care conțin azot, dintre care unii sunt esențiali, neputând fi sintetizați de către organismul uman. Unii aminoacizi pot fi convertiți (cu consum de energie) în glucoză
Nutriție () [Corola-website/Science/317376_a_318705]
-
monomeri de acizi grași asortați legați la un schelet de glicerol. Unii acizi grași sunt esențiali în dietă: aceștia nu pot fi sintetizați în organism. Moleculele de proteine conțin atomi de azot pe lângă carbon, oxigen, și hidrogen. Componentele fundamentale ale proteinelor sunt aminoacizi care conțin azot, dintre care unii sunt esențiali, neputând fi sintetizați de către organismul uman. Unii aminoacizi pot fi convertiți (cu consum de energie) în glucoză și se pot folosi pentru producere de energie, la fel ca glucoza obișnuită
Nutriție () [Corola-website/Science/317376_a_318705]
-
care unii sunt esențiali, neputând fi sintetizați de către organismul uman. Unii aminoacizi pot fi convertiți (cu consum de energie) în glucoză și se pot folosi pentru producere de energie, la fel ca glucoza obișnuită, în procesul de gluconeogeneză. Prin descompunerea proteinelor existente, scheletul de carbon al diferiților aminoacizi pot fi metabolizați în intermediari ai respirației celulare; amoniacul rămas se elimină sub formă de uree în urină. Acest lucru apare în mod normal doar în cursul unei înfometări prelungite. Glucidele pot fi
Nutriție () [Corola-website/Science/317376_a_318705]
-
de aminoacizi, poate influența procesele care implică insulina, glucagonul, și alți hormoni; prin urmare, raportul dintre omega-3 și omega-6 are efecte semnificative asupra sănătății generale, și efecte specifice asupra funcției sistemului imunitar și inflamației, precum și mitozei (de exemplu, diviziunea celulară). Proteinele sunt materiale de structură pentru o mare parte a corpului animal (mușchi, piele, și păr). Proteinele formează, de asemenea, enzimele care controlează reacțiile chimice în organism. Fiecare moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și
Nutriție () [Corola-website/Science/317376_a_318705]
-
omega-3 și omega-6 are efecte semnificative asupra sănătății generale, și efecte specifice asupra funcției sistemului imunitar și inflamației, precum și mitozei (de exemplu, diviziunea celulară). Proteinele sunt materiale de structură pentru o mare parte a corpului animal (mușchi, piele, și păr). Proteinele formează, de asemenea, enzimele care controlează reacțiile chimice în organism. Fiecare moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr
Nutriție () [Corola-website/Science/317376_a_318705]
-
sistemului imunitar și inflamației, precum și mitozei (de exemplu, diviziunea celulară). Proteinele sunt materiale de structură pentru o mare parte a corpului animal (mușchi, piele, și păr). Proteinele formează, de asemenea, enzimele care controlează reacțiile chimice în organism. Fiecare moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr). Oganismul are nevoie de aminoacizi pentru sintetizarea proteinelor noi (retenție de proteine) și pentru
Nutriție () [Corola-website/Science/317376_a_318705]
-
animal (mușchi, piele, și păr). Proteinele formează, de asemenea, enzimele care controlează reacțiile chimice în organism. Fiecare moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr). Oganismul are nevoie de aminoacizi pentru sintetizarea proteinelor noi (retenție de proteine) și pentru înlocuirea proteinelor deteriorate (mentenanță). Deoarece nu există depozite de proteine sau aminoacizi la dispoziție, aminoacizii trebuie să fie prezenți în dietă
Nutriție () [Corola-website/Science/317376_a_318705]
-
chimice în organism. Fiecare moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr). Oganismul are nevoie de aminoacizi pentru sintetizarea proteinelor noi (retenție de proteine) și pentru înlocuirea proteinelor deteriorate (mentenanță). Deoarece nu există depozite de proteine sau aminoacizi la dispoziție, aminoacizii trebuie să fie prezenți în dietă. Excesul de aminoacizi este eliminat de obicei prin urină. Pentru toate animalele, unii
Nutriție () [Corola-website/Science/317376_a_318705]
-
moleculă de proteine este compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr). Oganismul are nevoie de aminoacizi pentru sintetizarea proteinelor noi (retenție de proteine) și pentru înlocuirea proteinelor deteriorate (mentenanță). Deoarece nu există depozite de proteine sau aminoacizi la dispoziție, aminoacizii trebuie să fie prezenți în dietă. Excesul de aminoacizi este eliminat de obicei prin urină. Pentru toate animalele, unii aminoacizi sunt "esențiali" (animalul
Nutriție () [Corola-website/Science/317376_a_318705]
-
compusă din aminoacizi, caracterizați prin includerea de azot și câteodată sulf (aceste componente sunt responsabile pentru mirosul specific de proteină arsă, precum cheratina din păr). Oganismul are nevoie de aminoacizi pentru sintetizarea proteinelor noi (retenție de proteine) și pentru înlocuirea proteinelor deteriorate (mentenanță). Deoarece nu există depozite de proteine sau aminoacizi la dispoziție, aminoacizii trebuie să fie prezenți în dietă. Excesul de aminoacizi este eliminat de obicei prin urină. Pentru toate animalele, unii aminoacizi sunt "esențiali" (animalul nu îi poate sintetiza
Nutriție () [Corola-website/Science/317376_a_318705]