208 matches
-
să-mi ajute Dumnezeu! M/N M In această relație am ajuns la fracții iar R/B decât dintr-un număr subunitar care reprezintă restul împărțirii. Însă R Fiecare număr natural N are un invers 1/N un element în submulțimea numerelor subunitare derivată din mulțimea numerelor raționale. Dar și multiplii lui 1/N de tip k/N sunt subunitari cât timp k Împărțirea se scrie A:B=C + R/B A,B,C,R Naturale , R Referință Bibliografică: Scurte meditații
SCURTE MEDITAŢII de EMIL WAGNER în ediţia nr. 1958 din 11 mai 2016 by http://confluente.ro/emil_wagner_1462984890.html [Corola-blog/BlogPost/378508_a_379837]
-
au rezultat structurile rafinate I-algebric rafinate (Ț, I, F)-neutrosofic. De asemenea, a propus o extindere a probabilității clasice și probabilității imprecise la probabilitate neutrosofică (1995), pe care a definit-o că un vector tridimensional ale cărui componente sunt submulțimi reale ale intervalului non-standard ]-0, 1+[. A urmat introducerea conceptelor de măsură neutrosofică și integrală neutrosofică ( http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf ), și extinderea statisticii clasice la statistică neutrosofică ( http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf ). Din 2002, împreună cu
FLORENTIN SMARANDACHE de FLORENTIN SMARANDACHE în ediţia nr. 2134 din 03 noiembrie 2016 by http://confluente.ro/Redactia--Autori/Florentin_Smarandache.html [Corola-blog/BlogPost/351592_a_352921]
-
aceeași cardinalitate. Totuși par discutabili ultimii membrii ai celei de a doua mulțimi. Există sau nu există numere mai mari ca א? Cantor a stabilit că cele 2 mulțimi de mai sus au cardinalitate egală, deși a doua este o submulțime a primeai. Este și normal deoarece primul termen din a doua mulțime este egal cu al 10-celea din prima, al doilea cu al 20-celea și așa mai departe. Cu alte cuvinte există numere mai mari decât cel mai mare pe
UN INFINIT MAI MARE SAU MAI MIC de EMIL WAGNER în ediţia nr. 1484 din 23 ianuarie 2015 by http://confluente.ro/emil_wagner_1422011148.html [Corola-blog/BlogPost/370401_a_371730]
-
este însă o diferență esențială. Comparată cu mulțimea numerelor naturale, primul termen din noua mulțime este egală cu ultimul termen al mulțimii N. Drept consecință ar fi o prelungire a mulțimii N cu un singur termen intersectat și nicidecum o submulțime a ei. O contrazicere? Nicidecum. Produsul a două numere mari crește foarte repede spre infinit. Dacă X este o variabilă monoton crescătoare spre infinit relația iar k o constantă finită: F(x)=k*x x∈ (N) x ∞ Limita lui F
UN INFINIT MAI MARE SAU MAI MIC de EMIL WAGNER în ediţia nr. 1484 din 23 ianuarie 2015 by http://confluente.ro/emil_wagner_1422011148.html [Corola-blog/BlogPost/370401_a_371730]
-
cincime etc.). Dar putem lua în considerare și 3/4 (trei sferturi) respectiv 3/5 (trei cincimi) care nu sunt inversele unui număr natural ci derivă din ele. În general un număr oarecare n, inversat produce n-1 reprezentări în submulțimea fracțiunilor de unitate. Este oare mulțimea Q a fracțiilor ordinare cu mult mai mare decât mulțimea N a numerelor naturale? Pe de altă parte fie fracția: a/b ∈ Q Ea are o inversă b/a . Fie dat a > b > 0
DIN LUMEA FRACŢIILOR de EMIL WAGNER în ediţia nr. 1631 din 19 iunie 2015 by http://confluente.ro/emil_wagner_1434727264.html [Corola-blog/BlogPost/352899_a_354228]
-
la fracții subunitare. În fond noțiunea de fracție provine de la fracțiunile unității. Fracțiile ordinare supraunitare provin din adăugarea unei fracțiuni de unitate unui întreg. De exemplu: 2,5 = 2 + 0,5 = 2 + 1/2 = 5/2 Pe de altă parte submulțimea fracțiunilor de unitate pare cu mult mai mare decât întreaga mulțime a numerelor naturale deoarece nu cuprinde numai inversul numerelor naturale ci și toți multiplii subunitari ai acesteia cum am arătat mai sus iar orice fracție supraunitară generează două fracții
DIN LUMEA FRACŢIILOR de EMIL WAGNER în ediţia nr. 1631 din 19 iunie 2015 by http://confluente.ro/emil_wagner_1434727264.html [Corola-blog/BlogPost/352899_a_354228]
-
numerelor întregi (cu semn) și este formată prin alipirea la stânga mulțimii N (numere naturale) a mulțimii vide (cifra 0) și întreaga mulțime N în simetrie de oglindă drept ramură negativă. Din întreaga ramură pozitivă, reprezentativă pentru fracțiile ordinare, putem separa submulțimea fracțiilor subunitare Su definită astfel: Su = (m/n : m, n ∈ N, n >m >0) Ea cuprinde porțiunea 0 ... 1 din ramura pozitivă infinită a mulțimii numerelor raționale Q definită mai sus deoarece are numărătorul m < n limitat (mai mic decât
DIN LUMEA FRACŢIILOR de EMIL WAGNER în ediţia nr. 1631 din 19 iunie 2015 by http://confluente.ro/emil_wagner_1434727264.html [Corola-blog/BlogPost/352899_a_354228]
-
m = n). Respectând notațiile m, n ∈ N, n >m >0 toate fracțiile m/n sunt subunitare. Fracțiile supraunitare se formează prin adăugarea unei fracțiuni de unitate, reprezentată de o fracție subunitară, oricărei număr natural. Teoretic Q include între toți întregii submulțime Su în integralitatea ei. În rezumat: definesc o fracție ordinară adusă la cea mai simplă formă o fracție subunitară în care numărătorul m este prim în raport cu numitorul n. Ea reprezintă o fracțiune oarecare dintr-un întreg. Această fracție poate fi
DIN LUMEA FRACŢIILOR de EMIL WAGNER în ediţia nr. 1631 din 19 iunie 2015 by http://confluente.ro/emil_wagner_1434727264.html [Corola-blog/BlogPost/352899_a_354228]
-
on Paradoxism (cuprinzând 100 scriitori de pe glob), si Third Internațional Anthology on Paradoxism (distihuri paradoxiste de la 40 poeți de pe glob), Oradea (2000). A propus extinderea probabilităților clasice și imprecise la 'probabilitate neutrosofica', ca un vector tridimensional ale cărui componente sunt submulțimi ale intervalului ne-standard]-0, 1+[. Din anul 2002, împreună cu Dr. Jean Dezert de la Office Național de Recherches Aeronautiques din Paris se ocupă de fuziunea informației, extinzând Teoria Dempster-Shafer la o nouă teorie de fuzionare a informației plauzibile și paradoxiste
60 de ADRIANA ELENA RĂDUCAN în ediţia nr. 1440 din 10 decembrie 2014 by http://confluente.ro/adriana_elena_raducan_1418183341.html [Corola-blog/BlogPost/363280_a_364609]
-
pe când o întreagă dreaptă, axa numerică, poate cuprinde o infinitate numărabilă. Invers de ceea ce spun geometri, în fond tot matematicieni. Pare un joc de cuvinte dar nu este. Cu întreaga dreaptă treacă-meargă. O mulțime nenumărabilă de puncte poate înghiți ca submulțime numerele naturale numărabile așa cum sunt. Rămân puncte încă nefolosite care pot fi ulterior ocupate de numerele reale. Cu segmentul de dreaptă unitar problema stă altfel. De unde ia unul și același segment punctele necesare spre a cuprinde o mulțime nenumărabilă când
INFINITUL PRIVIT DE UN INGINER de EMIL WAGNER în ediţia nr. 1519 din 27 februarie 2015 by http://confluente.ro/emil_wagner_1425055033.html [Corola-blog/BlogPost/367843_a_369172]
-
date 12.1.4. Labirint 12.1.5. Algoritm de acoperire a tablei de șah prin săritură calului 12.1-6. Orice aplicație asemănătoare celor de mai sus 13. Probleme de combinatorica 13.1. Generarea produsului cartezian 13.2. Generări de submulțimi 13.3. Generarea aranjamentelor 13.4. Generarea permutărilor 14. Structuri dinamice de date (alocare dinamică) 14.1. Tipul referință 14.2. Noțiunea de variabilă dinamică 14.3. Structuri de date înlănțuite 14.3.1. Liste - operații elementare: inserare, căutare, eliminare
EUR-Lex () [Corola-website/Law/141463_a_142792]
-
Prezentare generală 8.2. Proceduri și funcții recursive 9. Metodă backtracking (iterativa sau recursiva) 9.1. Prezentare generală 9.2. Probleme de generare. Oportunitatea utilizării metodei backtracking 10. Generarea elementelor combinatoriale 10.1. Permutări, aranjamente, combinări 10.2. Produs cartezian, submulțimi, partiții 11. Structuri dinamice de date (alocare dinamică) 11.1. Tipul referință/pointer. Operatori de adresare 11.2. Noțiunea de variabilă dinamică 11.3. Structuri de date înlănțuite alocate dinamic - liste liniare (definire și operații: inserare, căutare, eliminare element) - liste
EUR-Lex () [Corola-website/Law/180464_a_181793]
-
capacități de explorare/investigare și rezolvare de probleme; 3. să dezvolte capacitatea de a comunica utilizând limbajul matematic; 4. să utilizeze concepte și metode matematice studiate în contexte variate. III. CONȚINUTURI ARITMETICĂ ȘI ALGEBRA Mulțimi Mulțimi: relații (apartenența, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile: N, Z, Q, R, R-Q. N inclus în Z inclus în Q inclus în R Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. Împărțirea
EUR-Lex () [Corola-website/Law/180462_a_181791]
-
transpunerea în limbaj matematic a enunțului unei probleme; 13. investigarea valorii de adevăr a unor enunțuri și construirea unor generalizări; 14. redactarea coerentă și completă a soluției unei probleme. III. Conținuturi ARITMETICĂ ȘI ALGEBRĂ Mulțimi Mulțimi: relații (apartenență, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite Mulțimile: N, Z, Q, R, RQ, N include Z include Q include R Scrierea numerelor naturale în baza zece Propoziții adevărate și propoziții false Împărțirea cu rest a
EUR-Lex () [Corola-website/Law/216453_a_217782]
-
Înțelegerea semnificației globale a informațiilor cu caracter matematic extrase din diferite surse documentare. S(17) Expunerea logică, detaliată și coerentă a propriilor demersuri de rezolvare a unei probleme. III. CONȚINUTUL TEMATIC ARITMETICĂ și ALGEBRA Mulțimi Mulțimi: relații (apartenența, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile N, Z, Q, R, R-Q. N inclus Z inclus Q inclus R. Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. Împărțirea cu rest a
EUR-Lex () [Corola-website/Law/150296_a_151625]
-
capacități de explorare/investigare și rezolvare de probleme; 3. să dezvolte capacitatea de a comunica utilizând limbajul matematic; 4. să utilizeze concepte și metode matematice studiate în contexte variate. III. CONȚINUTURI ARITMETICĂ ȘI ALGEBRA Mulțimi Mulțimi: relații (apartenența, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile: N, Z, Q, R, R-Q. N inclus în Z inclus în Q inclus în R Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. Împărțirea
EUR-Lex () [Corola-website/Law/181553_a_182882]
-
Prezentare generală 8.2. Proceduri și funcții recursive 9. Metoda backtracking (iterativă sau recursivă) 9.1. Prezentare generală 9.2. Probleme de generare. Oportunitatea utilizării metodei backtracking 10. Generarea elementelor combinatoriale 10.1. Permutări, aranjamente, combinări 10.2. Produs cartezian, submulțimi, partiții 11. Structuri dinamice de date (alocare dinamică) 11.1. Tipul referință/pointer. Operatori de adresare 11.2. Noțiunea de variabilă dinamică 11.3. Structuri de date înlănțuite alocate dinamic - liste liniare (definire și operații: inserare, căutare, eliminare element) - liste
EUR-Lex () [Corola-website/Law/156685_a_158014]
-
capacități de explorare / investigare și rezolvare de probleme; 3. să dezvolte capacitatea de a comunică utilizând limbajul matematic; 4. să utilizeze concepte și metode matematice studiate în contexte variate. III. CONȚINUTURI ARITMETICĂ ȘI ALGEBRĂ Mulțimi Mulțimi: relații (apartenență, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile: N, Z, Q, R, R-Q. N inclus în Z inclus în Q inclus în R. Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. Împărțirea
EUR-Lex () [Corola-website/Law/170670_a_171999]
-
Prezentare generală 8.2. Proceduri și funcții recursive 9. Metodă backtracking (iterativa sau recursiva) 9.1. Prezentare generală 9.2. Probleme de generare. Oportunitatea utilizării metodei backtracking 10. Generarea elementelor combinatoriale 10.1. Permutări, aranjamente, combinări 10.2. Produs cartezian, submulțimi, partiții 11. Structuri dinamice de date (alocare dinamică) 11.1. Tipul referință/pointer. Operatori de adresare 11.2. Noțiunea de variabilă dinamică 11.3. Structuri de date înlănțuite alocate dinamic - liste liniare (definire și operații: inserare, căutare, eliminare element) - liste
EUR-Lex () [Corola-website/Law/181621_a_182950]
-
documentare. S(14) Expunerea coerentă, în scris, a propriilor demersuri de rezolvare a unei probleme. III. CONȚINUTUL TEMATIC (Obiectivele evaluării și conținutul tematic sunt stabilite în concordanță cu prevederile programelor școlare). ARITMETICĂ și ALGEBRA --------------------- Mulțimi Mulțimi: relații (apartenența, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile N, Z, Q, R, R-Q. N inclus Z inclus Q inclus R. Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. Împărțirea cu rest a
EUR-Lex () [Corola-website/Law/140815_a_142144]
-
Prezentare generală 8.2. Proceduri și funcții recursive 9. Metoda backtracking (iterativă sau recursivă) 9.1. Prezentare generală 9.2. Probleme de generare. Oportunitatea utilizării metodei backtracking 10. Generarea elementelor combinatoriale 10.1. Permutări, aranjamente, combinări 10.2. Produs cartezian, submulțimi, partiții 11. Structuri dinamice de date (alocare dinamică) 11.1. Tipul referință/pointer. Operatori de adresare 11.2. Noțiunea de variabilă dinamică 11.3. Structuri de date înlănțuite alocate dinamic - liste liniare (definire și operații: inserare, căutare, eliminare element) - liste
EUR-Lex () [Corola-website/Law/156905_a_158234]
-
probe a unui experiment aleatoriu se numește universul probelor (sau spațiul probelor).<br> "Exemplu." La aruncarea unei monede omogene avem Ω={b,s}, unde b este banul, iar s este stema. "Definiție." Fie Ω un univers. Se numește eveniment orice submulțime a lui Ω.<br> "Exemplu." La aruncarea monedei Ω={s,b} si P(Ω={Ø,{s},{b},{s,b}}.<br> Deci în acest caz avem patru evenimente:
Teorema probabilității totale () [Corola-website/Science/307047_a_308376]
-
O relație de echivalență este o relație binară formula 1 pe o mulțime "A", relație ce îndeplinește următoarele proprietăți: O relație de echivalență partiționează mulțimea "A" pe care este definită în "clase de echivalență". Clasele de echivalență constituie o familie de submulțimi nevide disjuncte două câte două a căror reuniune este mulțimea "A" și cu proprietatea că două elemente din "A" sunt în aceeași clasă dacă și numai dacă sunt în relație de echivalență unul cu celălalt. Familia claselor de echivalență se
Relație de echivalență () [Corola-website/Science/310053_a_311382]
-
matematicii; 2. capacitatea de explorare / investigare și de rezolvare a problemelor; 3. capacitatea de a comunică utilizând limbajul matematic; 4. utilizarea conceptelor și metodelor matematice studiate, în contexte variate. III. CONȚINUTURI ARITMETICĂ ȘI ALGEBRĂ Mulțimi Mulțimi: relații (apartenență, egalitate, incluziune); submulțime; operații cu mulțimi (reuniunea, intersecția, diferența, produsul cartezian). Mulțimi finite, mulțimi infinite. Mulțimile: N, Z, Q, R, R-Q. N C Z C Q C R. Scrierea numerelor naturale în baza zece. Propoziții adevărate și propoziții false. împărțirea cu rest a numerelor
EUR-Lex () [Corola-website/Law/156661_a_157990]
-
interiorul edificiului pictată deasupra ușii inlaturarea regimului autoritar nu a fost lipsita de turbulente antrenand revolte chiar in interiorul militarilor primul este consacrat evoluției materiei de la formele ei elementare la alcătuirea universului și la apariția ființelor vii înseamnă că găsește submulțimea muchiilor care formează un arbore care include toate vârfurile și al cărui cost este minimizat la reprezentații ce locuiesc în locuri umbrite talul este mai subțire în ciuda preciziei reduse artileria medievală producea pierderi grele inamicului în cazul tragerilor de aproape
colectie de fraze din wikipedia in limba romana [Corola-website/Science/92305_a_92800]