6 matches
-
O tautocronă (curba evenimentelor de aceeași durată; din gracă ταὐτό tauto aceeași, χρόνος chronos timp), denumită și "curbă" sau "traiectorie tautocronă", este în mecanică, o curbă formula 1 cu proprietatea că un punct material formula 2, obligat să se miște fără frecare (mai general
Tautocronă () [Corola-website/Science/323736_a_325065]
-
mai rar: "-tautochronă"). Mișcările tautocrone pot avea loc în câmpuri de forțe formula 11 staționare, adică independente de timp, unde formula 12, formula 13 și formula 14 sunt coordonatele carteziene ale punctului formula 2 pe traiectorie (curba tautocronă). Un exemplu des întâlnit este cel al tautocronelor în câmp gravitațional uniform (cu accelerația gravitațională identică în orice punct al spațiului; aproximarea mișcărilor reale într-o vecinătate restrânsă a unui punct de pe o suprafață echipotențială din jurul unei mase care generează câmpul gravitațional), la care curbele tautocrone sunt cicloide
Tautocronă () [Corola-website/Science/323736_a_325065]
-
echipotențială din jurul unei mase care generează câmpul gravitațional), la care curbele tautocrone sunt cicloide situate în planuri verticale, având concavitatea în sus; punctele de tautocronism sunt reprezentate de vârfurile cicloidelor, unde tangenta la curbă este orizontală (au panta zero). Teoria tautocronelor a fost tratată sub diferitele sale aspecte de către Huygens, Newton, Euler, Jean Bernoulli, d’Alembert și Lagrange; la ora actuală, problema tautocronelor este considerată ca o problemă clasică a mecanicii, pe deplin rezolvată. Problema tautocronelor, legat de problematica determinării analitice
Tautocronă () [Corola-website/Science/323736_a_325065]
-
punctele de tautocronism sunt reprezentate de vârfurile cicloidelor, unde tangenta la curbă este orizontală (au panta zero). Teoria tautocronelor a fost tratată sub diferitele sale aspecte de către Huygens, Newton, Euler, Jean Bernoulli, d’Alembert și Lagrange; la ora actuală, problema tautocronelor este considerată ca o problemă clasică a mecanicii, pe deplin rezolvată. Problema tautocronelor, legat de problematica determinării analitice exacte a parcursului optim a pendulelor folosite în orologiile pentru măsurătorile timpului a apărut în secolul al XVIII-lea. După câteva încercări
Tautocronă () [Corola-website/Science/323736_a_325065]
-
orizontală (au panta zero). Teoria tautocronelor a fost tratată sub diferitele sale aspecte de către Huygens, Newton, Euler, Jean Bernoulli, d’Alembert și Lagrange; la ora actuală, problema tautocronelor este considerată ca o problemă clasică a mecanicii, pe deplin rezolvată. Problema tautocronelor, legat de problematica determinării analitice exacte a parcursului optim a pendulelor folosite în orologiile pentru măsurătorile timpului a apărut în secolul al XVIII-lea. După câteva încercări eșuate de a determina exact forma curbelor care satisfac condiția de tautocronsim, în
Tautocronă () [Corola-website/Science/323736_a_325065]
-
în orologiile pentru măsurătorile timpului a apărut în secolul al XVIII-lea. După câteva încercări eșuate de a determina exact forma curbelor care satisfac condiția de tautocronsim, în anul 1659, Christiaan Huygens găsește pentru prima oară soluția exactă a problemei tautocronelor. Rezultatele cercetărilor lui Huygens au fost publicate ulterior în anul 1673 în tratatul "Oscillatorium Horologium" în care expune rezultatele sale cu privire la existența unei clase de curbe care satisfac tautocronismul. El demonstrază pe cale pur geometrică faptul că o curbă pe care
Tautocronă () [Corola-website/Science/323736_a_325065]